A modeling method for the radiative characteristic parameters of a composite medium containing base fluid and randomly dispersed nanoparticles

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Li Jiayu, Rong Teng
{"title":"A modeling method for the radiative characteristic parameters of a composite medium containing base fluid and randomly dispersed nanoparticles","authors":"Li Jiayu,&nbsp;Rong Teng","doi":"10.1016/j.ijthermalsci.2025.109862","DOIUrl":null,"url":null,"abstract":"<div><div>Radiative heat transfer in a composite medium containing randomly dispersed nanoparticles exists widely in nature and industrial applications. The prediction of radiative characteristic parameters is a crucial issue for the simulation of radiative heat transfer in particulate composite media. The morphology and distribution of nanoparticles can affect the interaction between electromagnetic radiation and the nanoparticles, thereby influencing the radiative characteristic parameters of the composite medium. To solve this problem, an electromagnetic model is constructed for a composite medium containing base fluid and randomly distributed nanoparticles. The computational domain is divided into several nanoscale cubic grid cells. Then, the effective radiative characteristic parameters of a grid cell are simulated using finite-element method (FEM), incorporating the dependent scattering effects from nanoparticles in adjacent grid cells. FEM scattering models are established based on varying degrees of interparticle interaction, and the influence of these interaction degrees on the effective radiative characteristic parameters is analyzed. The multigrid Monte Carlo (MC) program is used to simulate the radiative transfer with the inputs of effective radiative characteristic parameters. Finally, the absorptivity of the composite medium containing base fluid and randomly dispersed nanoparticles is obtained. The simulation results presented in this study indicate that the influence of dependent scattering on the radiative characteristic parameters of a particulate composite medium increases with an increasing nanoparticle volume fraction (<span><math><mrow><msub><mi>f</mi><mi>v</mi></msub></mrow></math></span>). The absorptivity of the composite medium does not definitely increase with increasing <span><math><mrow><msub><mi>f</mi><mi>v</mi></msub></mrow></math></span>. The established method can be used to analyze the influences of morphology and the distribution of the nanoparticles in a particulate composite medium. Both the dependent scattering of nanoparticles and the interactions between nanoparticles and the base fluid are taken into account.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109862"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001851","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Radiative heat transfer in a composite medium containing randomly dispersed nanoparticles exists widely in nature and industrial applications. The prediction of radiative characteristic parameters is a crucial issue for the simulation of radiative heat transfer in particulate composite media. The morphology and distribution of nanoparticles can affect the interaction between electromagnetic radiation and the nanoparticles, thereby influencing the radiative characteristic parameters of the composite medium. To solve this problem, an electromagnetic model is constructed for a composite medium containing base fluid and randomly distributed nanoparticles. The computational domain is divided into several nanoscale cubic grid cells. Then, the effective radiative characteristic parameters of a grid cell are simulated using finite-element method (FEM), incorporating the dependent scattering effects from nanoparticles in adjacent grid cells. FEM scattering models are established based on varying degrees of interparticle interaction, and the influence of these interaction degrees on the effective radiative characteristic parameters is analyzed. The multigrid Monte Carlo (MC) program is used to simulate the radiative transfer with the inputs of effective radiative characteristic parameters. Finally, the absorptivity of the composite medium containing base fluid and randomly dispersed nanoparticles is obtained. The simulation results presented in this study indicate that the influence of dependent scattering on the radiative characteristic parameters of a particulate composite medium increases with an increasing nanoparticle volume fraction (fv). The absorptivity of the composite medium does not definitely increase with increasing fv. The established method can be used to analyze the influences of morphology and the distribution of the nanoparticles in a particulate composite medium. Both the dependent scattering of nanoparticles and the interactions between nanoparticles and the base fluid are taken into account.
含基流体和随机分散纳米颗粒的复合介质辐射特征参数的建模方法
含随机分散纳米颗粒的复合介质中的辐射传热在自然界和工业应用中广泛存在。在颗粒复合介质辐射传热模拟中,辐射特征参数的预测是一个关键问题。纳米粒子的形态和分布可以影响电磁辐射与纳米粒子的相互作用,从而影响复合介质的辐射特性参数。为了解决这一问题,建立了含有基流体和随机分布的纳米颗粒的复合介质的电磁模型。计算域被划分为多个纳米尺度的立方网格单元。在此基础上,利用有限元方法模拟了网格单元的有效辐射特性参数,并考虑了相邻网格中纳米粒子的散射效应。建立了基于不同粒子间相互作用程度的有限元散射模型,分析了这些相互作用程度对有效辐射特征参数的影响。采用多网格蒙特卡罗(MC)程序模拟了以有效辐射特征参数为输入的辐射传输过程。最后,得到了含有基液和随机分散的纳米颗粒的复合介质的吸光率。模拟结果表明,依赖散射对颗粒复合介质辐射特性参数的影响随着纳米颗粒体积分数(fv)的增大而增大。复合介质的吸光率并不一定随fv的增大而增大。所建立的方法可用于分析颗粒复合介质中纳米颗粒形貌和分布的影响。同时考虑了纳米颗粒的依赖散射和纳米颗粒与基液之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信