{"title":"Multi-level DLD microfluidic chip for plasma separation: A novel approach using Cu-ACE","authors":"Milad Darboui , Meysam Fatehi , Reza Zareifar , Hamid Reza Taheri Tolgari , Hadi Esmaeili Khoshmardan","doi":"10.1016/j.rinp.2025.108209","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the design and fabrication of an innovative microfluidic chip inspired by the intricate mechanism of fish gills. The main objective of this study is to develop an efficient microfluidic chip for the selective separation of blood plasma. To this end, numerical simulations in COMSOL Multiphysics software have been employed to optimize geometric and operational parameters, thereby achieving optimal separation efficiency. The fabrication of this chip employed the copper-assisted chemical etching (Cu-ACE) technique, resulting in the formation of a well-ordered array of crescent-shaped micro holes on a silicon wafer. The micro holes were molded using polydimethylsiloxane (PDMS), resulting in the production of PDMS pillars in a deterministic lateral displacement (DLD) structure. These filters were integrated into a copper reservoir with a depth of 10 μm, then strong bond between the PDMS structure and copper substrate was established using a new self-assembled silane layer. To assess the surface morphology and quality of the fabricated structures, field emission scanning electron microscopy (FE-SEM) and optical microscopy (OM) were utilized to observe the separation of the cells from the plasma. A hemocytometer was provided to determine the purity percentage for validation and assessment of the results. The results indicated that the adhesion between PDMS and copper is acceptable. Additionally, the crescent-shaped pillars have an efficient effect on the separation, achieving a plasma purity of 98 % from experimental test.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"71 ","pages":"Article 108209"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725001032","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the design and fabrication of an innovative microfluidic chip inspired by the intricate mechanism of fish gills. The main objective of this study is to develop an efficient microfluidic chip for the selective separation of blood plasma. To this end, numerical simulations in COMSOL Multiphysics software have been employed to optimize geometric and operational parameters, thereby achieving optimal separation efficiency. The fabrication of this chip employed the copper-assisted chemical etching (Cu-ACE) technique, resulting in the formation of a well-ordered array of crescent-shaped micro holes on a silicon wafer. The micro holes were molded using polydimethylsiloxane (PDMS), resulting in the production of PDMS pillars in a deterministic lateral displacement (DLD) structure. These filters were integrated into a copper reservoir with a depth of 10 μm, then strong bond between the PDMS structure and copper substrate was established using a new self-assembled silane layer. To assess the surface morphology and quality of the fabricated structures, field emission scanning electron microscopy (FE-SEM) and optical microscopy (OM) were utilized to observe the separation of the cells from the plasma. A hemocytometer was provided to determine the purity percentage for validation and assessment of the results. The results indicated that the adhesion between PDMS and copper is acceptable. Additionally, the crescent-shaped pillars have an efficient effect on the separation, achieving a plasma purity of 98 % from experimental test.
Results in PhysicsMATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍:
Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics.
Results in Physics welcomes three types of papers:
1. Full research papers
2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as:
- Data and/or a plot plus a description
- Description of a new method or instrumentation
- Negative results
- Concept or design study
3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.