Impact of nitrogen concentration on the growth of h-AlN thin films using RF-magnetron sputtering for microwave applications

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ethireddy Radhika , Sunil Gone , Samuel Talari , KA Emmanuel , Pamu Dobbidi
{"title":"Impact of nitrogen concentration on the growth of h-AlN thin films using RF-magnetron sputtering for microwave applications","authors":"Ethireddy Radhika ,&nbsp;Sunil Gone ,&nbsp;Samuel Talari ,&nbsp;KA Emmanuel ,&nbsp;Pamu Dobbidi","doi":"10.1016/j.mseb.2025.118226","DOIUrl":null,"url":null,"abstract":"<div><div>This study is of significant importance as it investigates the impact of argon to nitrogen gas ratio on the electrical and dielectric properties of AlN thin films deposited using RF magnetron sputtering. The AlN thin films’ X-ray diffraction (XRD) pattern revealed a hexagonal structure and is complemented by Raman spectroscopy. XPS high-resolution spectra reveal Al-N ∼ 74.32 eV with 83.66 % and N-Al-O ∼ 398.4 eV with 58.52 % for the h-AlN thin film deposited with 25 % nitrogen. The optical bandgap of ∼6.07 eV with a refractive index of ∼2.1 is obtained. The average RMS roughness achieved is ∼0.7 nm. The lowest leakage current density achieved is (3.06 <span><math><mo>×</mo></math></span> 10<sup>−5</sup> A/cm<sup>2</sup>). The optimal dielectric properties attained at microwave frequencies include <span><math><mrow><msub><mi>ε</mi><mi>r</mi></msub><mo>=</mo></mrow></math></span> 8.865, and <span><math><mrow><mi>tan</mi><mi>δ</mi></mrow></math></span> <span><math><mo>=</mo></math></span> 4.143 <span><math><mrow><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math></span> at 10 GHz. Thus, the obtained AlN thin films with the optimal conditions are well suited for microwave and high-frequency applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"317 ","pages":"Article 118226"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725002491","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study is of significant importance as it investigates the impact of argon to nitrogen gas ratio on the electrical and dielectric properties of AlN thin films deposited using RF magnetron sputtering. The AlN thin films’ X-ray diffraction (XRD) pattern revealed a hexagonal structure and is complemented by Raman spectroscopy. XPS high-resolution spectra reveal Al-N ∼ 74.32 eV with 83.66 % and N-Al-O ∼ 398.4 eV with 58.52 % for the h-AlN thin film deposited with 25 % nitrogen. The optical bandgap of ∼6.07 eV with a refractive index of ∼2.1 is obtained. The average RMS roughness achieved is ∼0.7 nm. The lowest leakage current density achieved is (3.06 × 10−5 A/cm2). The optimal dielectric properties attained at microwave frequencies include εr= 8.865, and tanδ = 4.143 ×10-3 at 10 GHz. Thus, the obtained AlN thin films with the optimal conditions are well suited for microwave and high-frequency applications.

Abstract Image

这项研究调查了氩气和氮气的比例对使用射频磁控溅射沉积的氮化铝薄膜的电性能和介电性质的影响,具有重要意义。氮化铝薄膜的 X 射线衍射 (XRD) 图显示为六角形结构,拉曼光谱对其进行了补充。XPS 高分辨率光谱显示,在含氮量为 25% 的 h-AlN 薄膜中,Al-N ∼ 74.32 eV,占 83.66%;N-Al-O ∼ 398.4 eV,占 58.52%。光带隙为∼6.07 eV,折射率为∼2.1。平均 RMS 粗糙度为 ∼0.7 nm。达到的最低漏电流密度为 (3.06 × 10-5 A/cm2)。微波频率下获得的最佳介电性能包括 εr= 8.865,10 GHz 时的 tanδ = 4.143 ×10-3。因此,在最佳条件下获得的氮化铝薄膜非常适合微波和高频应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信