Boyu Xiong , Xinxin Shao , Guangxu Fang , Mengmeng Dong , Haobo Han , Quanshun Li
{"title":"Porous PLGA microspheres for the inhalation delivery of icariin and miR-23b in the treatment of metastatic lung cancer","authors":"Boyu Xiong , Xinxin Shao , Guangxu Fang , Mengmeng Dong , Haobo Han , Quanshun Li","doi":"10.1016/j.ajps.2024.101008","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared to load icariin and miR-23b for the treatment of metastatic lung cancer. The microspheres exhibited desirable aerodynamic diameter, high drug loading and encapsulation efficiency, as well as a favorable drug release profile, which was beneficial for the deposition and exposure of drugs in the lung tissues. The release solution from microspheres exhibited a favorable anti-proliferative effect by inducting cell apoptosis and arresting the cell cycle at G1 phase, and meanwhile inhibited the migration and invasion of cancer cells. More importantly, the microspheres could be effectively inhaled and accumulated in the lung tissues to trigger the <em>in situ</em> apoptosis of tumor cells and suppress metastasis, using mice bearing melanoma-metastatic lung cancer as a model. Furthermore, inhalation of the microspheres showed favorable biocompatibility, barely causing tissue damage. Overall, porous PLGA microspheres provide a promising platform for the inhalable co-delivery of drugs and genes to obtain ideal therapeutic efficacy in lung cancer and other pulmonary diseases.</div></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":"20 2","pages":"Article 101008"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087624001259","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared to load icariin and miR-23b for the treatment of metastatic lung cancer. The microspheres exhibited desirable aerodynamic diameter, high drug loading and encapsulation efficiency, as well as a favorable drug release profile, which was beneficial for the deposition and exposure of drugs in the lung tissues. The release solution from microspheres exhibited a favorable anti-proliferative effect by inducting cell apoptosis and arresting the cell cycle at G1 phase, and meanwhile inhibited the migration and invasion of cancer cells. More importantly, the microspheres could be effectively inhaled and accumulated in the lung tissues to trigger the in situ apoptosis of tumor cells and suppress metastasis, using mice bearing melanoma-metastatic lung cancer as a model. Furthermore, inhalation of the microspheres showed favorable biocompatibility, barely causing tissue damage. Overall, porous PLGA microspheres provide a promising platform for the inhalable co-delivery of drugs and genes to obtain ideal therapeutic efficacy in lung cancer and other pulmonary diseases.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.