Yichen Zhu , Xiaojian Ma , Ruiquan Zhou , Yuwei Sun , Mindi Zhang
{"title":"Bubble collapse dynamics near the composite walls: Progress and challenges","authors":"Yichen Zhu , Xiaojian Ma , Ruiquan Zhou , Yuwei Sun , Mindi Zhang","doi":"10.1016/j.ultsonch.2025.107298","DOIUrl":null,"url":null,"abstract":"<div><div>Bubble dynamics near the composite walls has become one of the major issues in the fields of aerospace, underwater weapons, and mechanical engineering. The present work reviews recent progress made towards developing experimental and numerical investigation for interaction of bubble dynamics and composite response. The goal of our overall efforts is to (1) summarize the progress made in the experimental and numerical modeling and approaches for bubble dynamics near various composite walls, (2) discuss the effect of designability of the composite materials on the bubble dynamics, with special emphasis on the variations of fiber orientation and ply number of composite walls, as well as correspondingly accompanied by tilted jets and opposite migration of bubbles, with experimental and numerical modeling and approaches, (3) improve the understanding of relationship between bubble dynamic behaviors and material’s specific stiffness via experimental data and modified deep neural network method, with particular emphasis on the critical condition of bubble migration under the actions of various material properties. Issues including the mechanism of bubble–wall interaction are discussed.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"116 ","pages":"Article 107298"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772500077X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Bubble dynamics near the composite walls has become one of the major issues in the fields of aerospace, underwater weapons, and mechanical engineering. The present work reviews recent progress made towards developing experimental and numerical investigation for interaction of bubble dynamics and composite response. The goal of our overall efforts is to (1) summarize the progress made in the experimental and numerical modeling and approaches for bubble dynamics near various composite walls, (2) discuss the effect of designability of the composite materials on the bubble dynamics, with special emphasis on the variations of fiber orientation and ply number of composite walls, as well as correspondingly accompanied by tilted jets and opposite migration of bubbles, with experimental and numerical modeling and approaches, (3) improve the understanding of relationship between bubble dynamic behaviors and material’s specific stiffness via experimental data and modified deep neural network method, with particular emphasis on the critical condition of bubble migration under the actions of various material properties. Issues including the mechanism of bubble–wall interaction are discussed.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.