Design strategy of advanced generation breeding population of Pinus tabuliformis based on genetic variation and inbreeding level

IF 3.8 1区 农林科学 Q1 FORESTRY
Chengcheng Zhou , Fan Sun , Zhiyuan Jiao , Yousry A. El-Kassaby , Wei Li
{"title":"Design strategy of advanced generation breeding population of Pinus tabuliformis based on genetic variation and inbreeding level","authors":"Chengcheng Zhou ,&nbsp;Fan Sun ,&nbsp;Zhiyuan Jiao ,&nbsp;Yousry A. El-Kassaby ,&nbsp;Wei Li","doi":"10.1016/j.fecs.2025.100320","DOIUrl":null,"url":null,"abstract":"<div><div>The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement. The relationship between genetic variation level within <em>Pinus tabuliformis</em> breeding populations and selection strategies or selection effectiveness is not fully investigated. Here, we compared the selection effectiveness of combined and individual direct selection strategies using half- and full-sib families produced from advanced-generation <em>P</em>. <em>tabuliformis</em> seed orchard as our test populations. Our results revealed that, within half-sib families, average diameter at breast height (DBH), tree height, and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%, 18.56%, and 31.01%, respectively, than those selected by the combined selection strategy. Furthermore, significant differences (<em>P</em> ​&lt; ​0.01) were observed between the two strategies in terms of the expected genetic gains for average tree height and volume. In contrast, within full-sib families, the differences in tree average DBH, height, and volume between the two selection strategies were relatively minor with increase of 0.17%, 2.73%, and 2.21%, respectively, and no significant differences were found in the average expected genetic gains for the studied traits. Half-sib families exhibited greater phenotypic and genetic variation, resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk. Based on genetic distance estimates using molecular markers, our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm (IAPGA) reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs, respectively. In conclusion, the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation <em>P</em>. <em>tabuliformis</em> seed orchards.</div></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"13 ","pages":"Article 100320"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562025000296","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The level of genetic variation within a breeding population affects the effectiveness of selection strategies for genetic improvement. The relationship between genetic variation level within Pinus tabuliformis breeding populations and selection strategies or selection effectiveness is not fully investigated. Here, we compared the selection effectiveness of combined and individual direct selection strategies using half- and full-sib families produced from advanced-generation P. tabuliformis seed orchard as our test populations. Our results revealed that, within half-sib families, average diameter at breast height (DBH), tree height, and volume growth of superior individuals selected by the direct selection strategy were higher by 7.72%, 18.56%, and 31.01%, respectively, than those selected by the combined selection strategy. Furthermore, significant differences (P ​< ​0.01) were observed between the two strategies in terms of the expected genetic gains for average tree height and volume. In contrast, within full-sib families, the differences in tree average DBH, height, and volume between the two selection strategies were relatively minor with increase of 0.17%, 2.73%, and 2.21%, respectively, and no significant differences were found in the average expected genetic gains for the studied traits. Half-sib families exhibited greater phenotypic and genetic variation, resulting in improved selection efficiency with the direct selection strategy but also introduced a level of inbreeding risk. Based on genetic distance estimates using molecular markers, our comparative seed orchard design analysis showed that the Improved Adaptive Genetic Programming Algorithm (IAPGA) reduced the average inbreeding coefficient by 14.36% and 14.73% compared to sequential and random designs, respectively. In conclusion, the combination of the direct selection strategy with IAPGA seed orchard design aimed at minimizing inbreeding offered an efficient approach for establishing advanced-generation P. tabuliformis seed orchards.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forest Ecosystems
Forest Ecosystems Environmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍: Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信