Controlling dislocation clusters in selective area growth of gallium nitride with hexagonal configurations of serpentine channel mask

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Muhammad Saddique Akbar Khan , Guo Yu , Pervaiz Ahmad , Weihua Chen , Menglai Lei , Huanqing Chen , Xiaodong Hu
{"title":"Controlling dislocation clusters in selective area growth of gallium nitride with hexagonal configurations of serpentine channel mask","authors":"Muhammad Saddique Akbar Khan ,&nbsp;Guo Yu ,&nbsp;Pervaiz Ahmad ,&nbsp;Weihua Chen ,&nbsp;Menglai Lei ,&nbsp;Huanqing Chen ,&nbsp;Xiaodong Hu","doi":"10.1016/j.micrna.2025.208144","DOIUrl":null,"url":null,"abstract":"<div><div>The periodic distribution of threading dislocations (TDs) originating from the windows and coalescence areas during epitaxial lateral overgrowth (ELOG) of GaN hindered the further development of large wafer-scale crystal growth. Although, the serpentine channel patterned sapphire substrate (SCPSS) effectively controlled TDs from the window areas, however, the periodic distribution of TDs from coalescence areas was still problematic. To control the periodicity of TDs from coalescence areas, selective area growth (SAG) was introduced in the form of a triangular pattern. However, these selective patterns were relaxed and clusters of TDs were gliding. Despite adding InGaN-Interlayer, the complete elimination of TD clusters was still a great challengeTherefore, the hexagonal configuration of the SCPSS was proposed. Characterization results proved that the hexagonal configuration of SAG assisted by facet structures effectively controls TDs clusters in the SAG. In addition, defects from the meeting fronts were also effectively controlled through the convergence of the growth fronts merging from hexagonal sides at central single-dimensionless points. Optimizing high-quality growth by the hexagonal configuration of SCPSS is promising for GaN-based devices such as laser diodes (LDs) and light-emitting diodes (LEDs).</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"203 ","pages":"Article 208144"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The periodic distribution of threading dislocations (TDs) originating from the windows and coalescence areas during epitaxial lateral overgrowth (ELOG) of GaN hindered the further development of large wafer-scale crystal growth. Although, the serpentine channel patterned sapphire substrate (SCPSS) effectively controlled TDs from the window areas, however, the periodic distribution of TDs from coalescence areas was still problematic. To control the periodicity of TDs from coalescence areas, selective area growth (SAG) was introduced in the form of a triangular pattern. However, these selective patterns were relaxed and clusters of TDs were gliding. Despite adding InGaN-Interlayer, the complete elimination of TD clusters was still a great challengeTherefore, the hexagonal configuration of the SCPSS was proposed. Characterization results proved that the hexagonal configuration of SAG assisted by facet structures effectively controls TDs clusters in the SAG. In addition, defects from the meeting fronts were also effectively controlled through the convergence of the growth fronts merging from hexagonal sides at central single-dimensionless points. Optimizing high-quality growth by the hexagonal configuration of SCPSS is promising for GaN-based devices such as laser diodes (LDs) and light-emitting diodes (LEDs).
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信