Floating solar wireless power transfer system for electric ships: Design and laboratory tests

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Khalifa Aliyu Ibrahim , Timothé Le Maréchal , Patrick Luk , Qing Qin , Luofeng Huang , Ying Xie , Patrick Verdin , Zhenhua Luo
{"title":"Floating solar wireless power transfer system for electric ships: Design and laboratory tests","authors":"Khalifa Aliyu Ibrahim ,&nbsp;Timothé Le Maréchal ,&nbsp;Patrick Luk ,&nbsp;Qing Qin ,&nbsp;Luofeng Huang ,&nbsp;Ying Xie ,&nbsp;Patrick Verdin ,&nbsp;Zhenhua Luo","doi":"10.1016/j.enconman.2025.119738","DOIUrl":null,"url":null,"abstract":"<div><div>The maritime industry is under increasing pressure to decarbonise, presenting an important pathway of transforming the power systems from conventional marine fuels to electric-based. This study proposes an innovative solution to support maritime decarbonisation through the integration of a floating solar clean energy harnessing and wireless power transfer (WPT) technology for electric vessels. The paper presents the design and experimental tests of the integrated system specifically, based on a model of an electric yacht. This study provides an in-depth analysis of application of floating solar to provides an off-grid wireless power transfer system that can scale for larger vessels such as ferries. The off-grid modularity proposed enables scalable, flexible, and sustainable energy delivery for maritime applications and decarbonisation with specific attention to challenges in WPT alignment and environmental condition. Simulations using ANSYS Maxwell were performed to model the magnetic field interactions and ascertain the optimal power transfer efficiency. Subsequently, a reduced-scale prototype system was designed, built and tested in a wave tank. The experimental results demonstrated efficient wireless charging with an average efficiency of 82 %, and the docking system proved effective in maintaining alignment even when the ship has wave-induced motions. The findings support the feasibility of using floating solar WPT systems for maritime vessels and pave the way to larger-scale studies.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"332 ","pages":"Article 119738"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890425002614","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The maritime industry is under increasing pressure to decarbonise, presenting an important pathway of transforming the power systems from conventional marine fuels to electric-based. This study proposes an innovative solution to support maritime decarbonisation through the integration of a floating solar clean energy harnessing and wireless power transfer (WPT) technology for electric vessels. The paper presents the design and experimental tests of the integrated system specifically, based on a model of an electric yacht. This study provides an in-depth analysis of application of floating solar to provides an off-grid wireless power transfer system that can scale for larger vessels such as ferries. The off-grid modularity proposed enables scalable, flexible, and sustainable energy delivery for maritime applications and decarbonisation with specific attention to challenges in WPT alignment and environmental condition. Simulations using ANSYS Maxwell were performed to model the magnetic field interactions and ascertain the optimal power transfer efficiency. Subsequently, a reduced-scale prototype system was designed, built and tested in a wave tank. The experimental results demonstrated efficient wireless charging with an average efficiency of 82 %, and the docking system proved effective in maintaining alignment even when the ship has wave-induced motions. The findings support the feasibility of using floating solar WPT systems for maritime vessels and pave the way to larger-scale studies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信