{"title":"On the microstructure and dynamic mechanical behavior of Cu–Cr–Zr alloy manufactured by high-power laser powder bed fusion","authors":"Nadia Azizi , Hamed Asgari , Mahyar Hasanabadi , Akindele Odeshi , Ehsan Toyserkani","doi":"10.1016/j.matdes.2025.113826","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores high-power laser powder bed fusion (LPBF) processing of Cu–Cr–Zr alloy, focusing on its high strain rate dynamic mechanical response and microstructural evolution. The alloy undergoes significant strain hardening during dynamic impact loading, primarily attributed to intensified dislocation interactions and multiplication. This is accompanied by thermal softening induced by adiabatic heating, therefore improving strain accommodation. As the strain rate increases from 4400 s<sup>−1</sup> to 11300 s<sup>−1</sup>, the ultimate compressive strength (UCS) enhances from 173 ± 8 MPa to 489 ± 14 MPa, demonstrating a high strain rate sensitivity (SRS) of ∼ 1. Microstructural examinations reveal that higher strain rates intensify the occurrence of adiabatic shear bands (ASBs), leading to severe localized plastic deformation. These ASBs generate localized stress concentrations, which in turn accelerate crack initiation and propagation through pore formation and coalescence within the ASBs. Despite this severe plastic deformation, texture analysis indicates that the crystallographic texture remains largely stable which suggests that the deformation mechanism is primarily governed by dislocation motion and interaction, rather than by crystal structure reorientation. Overall, the alloy balances strain hardening and strain accommodation at high strain rates, making it well-suited for applications requiring strength and resilience under dynamic impacts.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"253 ","pages":"Article 113826"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525002461","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores high-power laser powder bed fusion (LPBF) processing of Cu–Cr–Zr alloy, focusing on its high strain rate dynamic mechanical response and microstructural evolution. The alloy undergoes significant strain hardening during dynamic impact loading, primarily attributed to intensified dislocation interactions and multiplication. This is accompanied by thermal softening induced by adiabatic heating, therefore improving strain accommodation. As the strain rate increases from 4400 s−1 to 11300 s−1, the ultimate compressive strength (UCS) enhances from 173 ± 8 MPa to 489 ± 14 MPa, demonstrating a high strain rate sensitivity (SRS) of ∼ 1. Microstructural examinations reveal that higher strain rates intensify the occurrence of adiabatic shear bands (ASBs), leading to severe localized plastic deformation. These ASBs generate localized stress concentrations, which in turn accelerate crack initiation and propagation through pore formation and coalescence within the ASBs. Despite this severe plastic deformation, texture analysis indicates that the crystallographic texture remains largely stable which suggests that the deformation mechanism is primarily governed by dislocation motion and interaction, rather than by crystal structure reorientation. Overall, the alloy balances strain hardening and strain accommodation at high strain rates, making it well-suited for applications requiring strength and resilience under dynamic impacts.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.