Effect of surface chemical heterogeneity on bubble attachment probability: Implications for coarse particle flotation

IF 4.9 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Xianggen Chen , Ming Guo , Yijun Cao , Chao Li
{"title":"Effect of surface chemical heterogeneity on bubble attachment probability: Implications for coarse particle flotation","authors":"Xianggen Chen ,&nbsp;Ming Guo ,&nbsp;Yijun Cao ,&nbsp;Chao Li","doi":"10.1016/j.mineng.2025.109251","DOIUrl":null,"url":null,"abstract":"<div><div>Coarse particle flotation for gangue rejection at an early stage has received extensive attentions in mineral processing. Coarse particles often bear chemically heterogeneous surface with low exposure rate of valuable minerals. To date, the bubble attaching behavior at such heterogeneous surface remains unclear, which hinders the process optimization for coarse particle flotation. Therefore, this study investigated the attachment probability of bubbles of three sizes on four inclined hydrophilic surfaces containing discretely distributed hydrophobic dots. Note that these surfaces had the same area fraction of hydrophobic phase but different distribution pattern in terms of hydrophobic dot size and their distribution density. For small bubble of 550 μm in diameter, it was observed that the distribution density of the hydrophobic dots dominated the attachment probability. As the bubble size increased to 750 μm and 950 μm, bigger hydrophobic dot size could improve the bubble attachment probability. Further study found that the surface chemical heterogeneity and bubble size jointly determined the bubble adhesion force which is directly related to the attachment probability. This study reveals the matching mechanism between the exposed features of heterogeneous surface and bubble size, which would facilitate the process optimization for coarse particle flotation.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"226 ","pages":"Article 109251"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687525000792","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coarse particle flotation for gangue rejection at an early stage has received extensive attentions in mineral processing. Coarse particles often bear chemically heterogeneous surface with low exposure rate of valuable minerals. To date, the bubble attaching behavior at such heterogeneous surface remains unclear, which hinders the process optimization for coarse particle flotation. Therefore, this study investigated the attachment probability of bubbles of three sizes on four inclined hydrophilic surfaces containing discretely distributed hydrophobic dots. Note that these surfaces had the same area fraction of hydrophobic phase but different distribution pattern in terms of hydrophobic dot size and their distribution density. For small bubble of 550 μm in diameter, it was observed that the distribution density of the hydrophobic dots dominated the attachment probability. As the bubble size increased to 750 μm and 950 μm, bigger hydrophobic dot size could improve the bubble attachment probability. Further study found that the surface chemical heterogeneity and bubble size jointly determined the bubble adhesion force which is directly related to the attachment probability. This study reveals the matching mechanism between the exposed features of heterogeneous surface and bubble size, which would facilitate the process optimization for coarse particle flotation.
表面化学异质性对气泡附着概率的影响:对粗颗粒浮选的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Minerals Engineering
Minerals Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
18.80%
发文量
519
审稿时长
81 days
期刊介绍: The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信