Discovery of N-substituted-2-((arylethyl)amino)-2-(2-methoxyphenyl) acetamides: A novel family of antiplatelet agents

IF 6.9 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Lyanne Rodríguez , Carlos Rodríguez , Jhonny Azuaje , Rubén Prieto-Díaz , Antón L. Martínez , María I. Loza , José Brea , David Reza , Eddy Sotelo , Eduardo Fuentes
{"title":"Discovery of N-substituted-2-((arylethyl)amino)-2-(2-methoxyphenyl) acetamides: A novel family of antiplatelet agents","authors":"Lyanne Rodríguez ,&nbsp;Carlos Rodríguez ,&nbsp;Jhonny Azuaje ,&nbsp;Rubén Prieto-Díaz ,&nbsp;Antón L. Martínez ,&nbsp;María I. Loza ,&nbsp;José Brea ,&nbsp;David Reza ,&nbsp;Eddy Sotelo ,&nbsp;Eduardo Fuentes","doi":"10.1016/j.biopha.2025.117971","DOIUrl":null,"url":null,"abstract":"<div><div>The development of new antiplatelet agents is essential due to the limitations of existing therapies and the high prevalence of thrombotic disorders. As part of a project aimed at harnessing multicomponent-assisted synthetic strategies for drug discovery, we identified a novel class of potent antiplatelet compounds. Herein we report the design, synthesis, and pharmacological evaluation of a new series of N-substituted-2-((arylethyl)amino)-2-(2-methoxyphenyl)acetamides, along with structure-activity relationship analysis and a preliminary investigation of their mechanism of action. The most active compounds, 7d, 9e, and 6f, exhibited IC₅₀ values of 0.92 ± 0.24, 0.59 ± 0.10, and 0.39 ± 0.07 µM, respectively, in serotonin (30 µM) plus collagen (1 µg/mL)-induced platelet aggregation assays, outperforming sarpogrelate (IC₅₀ 5.41 ± 1.25). Functional and binding studies confirmed that these compounds act as low-affinity, weak partial agonists at 5-HT<sub>2A</sub>, suggesting their antiplatelet effects arise from serotonin-dependent pathways rather than direct 5-HT<sub>2A</sub> receptor antagonism. Additional experiments confirmed that the selected compounds are non-cytotoxic and significantly suppress P-selectin expression and CD63 secretion, demonstrating inhibition of both early and late stages of platelet activation. These findings introduce a new mechanistic approach to platelet inhibition, expanding the chemical space for antiplatelet drug development. Further studies should focus on molecular target identification and combination therapy potential for thrombosis treatment.</div></div>","PeriodicalId":8966,"journal":{"name":"Biomedicine & Pharmacotherapy","volume":"186 ","pages":"Article 117971"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicine & Pharmacotherapy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0753332225001659","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of new antiplatelet agents is essential due to the limitations of existing therapies and the high prevalence of thrombotic disorders. As part of a project aimed at harnessing multicomponent-assisted synthetic strategies for drug discovery, we identified a novel class of potent antiplatelet compounds. Herein we report the design, synthesis, and pharmacological evaluation of a new series of N-substituted-2-((arylethyl)amino)-2-(2-methoxyphenyl)acetamides, along with structure-activity relationship analysis and a preliminary investigation of their mechanism of action. The most active compounds, 7d, 9e, and 6f, exhibited IC₅₀ values of 0.92 ± 0.24, 0.59 ± 0.10, and 0.39 ± 0.07 µM, respectively, in serotonin (30 µM) plus collagen (1 µg/mL)-induced platelet aggregation assays, outperforming sarpogrelate (IC₅₀ 5.41 ± 1.25). Functional and binding studies confirmed that these compounds act as low-affinity, weak partial agonists at 5-HT2A, suggesting their antiplatelet effects arise from serotonin-dependent pathways rather than direct 5-HT2A receptor antagonism. Additional experiments confirmed that the selected compounds are non-cytotoxic and significantly suppress P-selectin expression and CD63 secretion, demonstrating inhibition of both early and late stages of platelet activation. These findings introduce a new mechanistic approach to platelet inhibition, expanding the chemical space for antiplatelet drug development. Further studies should focus on molecular target identification and combination therapy potential for thrombosis treatment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.90
自引率
2.70%
发文量
1621
审稿时长
48 days
期刊介绍: Biomedicine & Pharmacotherapy stands as a multidisciplinary journal, presenting a spectrum of original research reports, reviews, and communications in the realms of clinical and basic medicine, as well as pharmacology. The journal spans various fields, including Cancer, Nutriceutics, Neurodegenerative, Cardiac, and Infectious Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信