Molecular mechanisms underlying plant responses to low phosphate stress and potential applications in crop improvement

Dandan Hu , Jinyu Zhang , Yuming Yang , Deyue Yu , Hengyou Zhang , Dan Zhang
{"title":"Molecular mechanisms underlying plant responses to low phosphate stress and potential applications in crop improvement","authors":"Dandan Hu ,&nbsp;Jinyu Zhang ,&nbsp;Yuming Yang ,&nbsp;Deyue Yu ,&nbsp;Hengyou Zhang ,&nbsp;Dan Zhang","doi":"10.1016/j.ncrops.2024.100064","DOIUrl":null,"url":null,"abstract":"<div><div>Phosphorus is a critical nutrient for plant growth, influencing crop development and yield. However, the excessive reliance on phosphate fertilizers to address inorganic phosphate (Pi) deficiency is unsustainable. This review explores recent advances in understanding plant responses to Pi deficiency, focusing on the molecular mechanisms and genes involved. Key biological participants include Pi transporters, transcription factors, hormones, sugar signaling pathways, root exudates, and the complex interactions between Pi and other essential nutrients such as nitrogen, iron, and potassium. Furthermore, the role of microRNAs, lncRNAs, lipid remodeling, and genetic and epigenetic modifications are discussed. The review also highlights the potential of integrating phenomics, multi-omics approaches, gene editing, breeding strategies, and artificial intelligence to accelerate the development of Pi-efficient crops to meet the demands of a growing global population amidst dwindling Pi reserves.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus is a critical nutrient for plant growth, influencing crop development and yield. However, the excessive reliance on phosphate fertilizers to address inorganic phosphate (Pi) deficiency is unsustainable. This review explores recent advances in understanding plant responses to Pi deficiency, focusing on the molecular mechanisms and genes involved. Key biological participants include Pi transporters, transcription factors, hormones, sugar signaling pathways, root exudates, and the complex interactions between Pi and other essential nutrients such as nitrogen, iron, and potassium. Furthermore, the role of microRNAs, lncRNAs, lipid remodeling, and genetic and epigenetic modifications are discussed. The review also highlights the potential of integrating phenomics, multi-omics approaches, gene editing, breeding strategies, and artificial intelligence to accelerate the development of Pi-efficient crops to meet the demands of a growing global population amidst dwindling Pi reserves.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信