Calibration methodology of static, dynamic and ageing parameters of an electrochemical model for a Li-ion cell based on an experimental approach

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Francesco Mazzeo , Eduardo Graziano , Silvia Bodoardo , Davide Papurello
{"title":"Calibration methodology of static, dynamic and ageing parameters of an electrochemical model for a Li-ion cell based on an experimental approach","authors":"Francesco Mazzeo ,&nbsp;Eduardo Graziano ,&nbsp;Silvia Bodoardo ,&nbsp;Davide Papurello","doi":"10.1016/j.renene.2025.122793","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel methodology for developing a digital twin of a lithium-ion coin cell battery (Graphite-NMC622), accurately replicating the average discharge behaviour of various laboratory-tested batteries and characterizing degradation phenomena through cyclic ageing experiments. Given the anticipated rise in electric vehicle adoption, this work is particularly relevant for addressing the growing demand for lithium-ion batteries. The experimental characterization identified the minimum requirements for battery modelling, with tests conducted up to a C/5 current. Degradation behaviours were analysed through cycle ageing tests at two State-Of-Charge (SOC) ranges (100 %–0 % and 90 %–10 %), establishing a robust foundation for modelling degradation trends. While further calendar ageing tests could enhance the degradation modelling, they would require extensive data and time. Despite these constraints, the virtual coin cell model developed using GT-AutoLion, an industry-standard CAE software, demonstrated excellent accuracy, achieving an RRMSE of less than 2.0 % and R<sup>2</sup> greater than 0.95. This work is significant as it provides a reliable framework for battery modelling that can assist companies in optimizing battery design and performance.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122793"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125004550","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel methodology for developing a digital twin of a lithium-ion coin cell battery (Graphite-NMC622), accurately replicating the average discharge behaviour of various laboratory-tested batteries and characterizing degradation phenomena through cyclic ageing experiments. Given the anticipated rise in electric vehicle adoption, this work is particularly relevant for addressing the growing demand for lithium-ion batteries. The experimental characterization identified the minimum requirements for battery modelling, with tests conducted up to a C/5 current. Degradation behaviours were analysed through cycle ageing tests at two State-Of-Charge (SOC) ranges (100 %–0 % and 90 %–10 %), establishing a robust foundation for modelling degradation trends. While further calendar ageing tests could enhance the degradation modelling, they would require extensive data and time. Despite these constraints, the virtual coin cell model developed using GT-AutoLion, an industry-standard CAE software, demonstrated excellent accuracy, achieving an RRMSE of less than 2.0 % and R2 greater than 0.95. This work is significant as it provides a reliable framework for battery modelling that can assist companies in optimizing battery design and performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信