{"title":"Calibration methodology of static, dynamic and ageing parameters of an electrochemical model for a Li-ion cell based on an experimental approach","authors":"Francesco Mazzeo , Eduardo Graziano , Silvia Bodoardo , Davide Papurello","doi":"10.1016/j.renene.2025.122793","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel methodology for developing a digital twin of a lithium-ion coin cell battery (Graphite-NMC622), accurately replicating the average discharge behaviour of various laboratory-tested batteries and characterizing degradation phenomena through cyclic ageing experiments. Given the anticipated rise in electric vehicle adoption, this work is particularly relevant for addressing the growing demand for lithium-ion batteries. The experimental characterization identified the minimum requirements for battery modelling, with tests conducted up to a C/5 current. Degradation behaviours were analysed through cycle ageing tests at two State-Of-Charge (SOC) ranges (100 %–0 % and 90 %–10 %), establishing a robust foundation for modelling degradation trends. While further calendar ageing tests could enhance the degradation modelling, they would require extensive data and time. Despite these constraints, the virtual coin cell model developed using GT-AutoLion, an industry-standard CAE software, demonstrated excellent accuracy, achieving an RRMSE of less than 2.0 % and R<sup>2</sup> greater than 0.95. This work is significant as it provides a reliable framework for battery modelling that can assist companies in optimizing battery design and performance.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"246 ","pages":"Article 122793"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125004550","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel methodology for developing a digital twin of a lithium-ion coin cell battery (Graphite-NMC622), accurately replicating the average discharge behaviour of various laboratory-tested batteries and characterizing degradation phenomena through cyclic ageing experiments. Given the anticipated rise in electric vehicle adoption, this work is particularly relevant for addressing the growing demand for lithium-ion batteries. The experimental characterization identified the minimum requirements for battery modelling, with tests conducted up to a C/5 current. Degradation behaviours were analysed through cycle ageing tests at two State-Of-Charge (SOC) ranges (100 %–0 % and 90 %–10 %), establishing a robust foundation for modelling degradation trends. While further calendar ageing tests could enhance the degradation modelling, they would require extensive data and time. Despite these constraints, the virtual coin cell model developed using GT-AutoLion, an industry-standard CAE software, demonstrated excellent accuracy, achieving an RRMSE of less than 2.0 % and R2 greater than 0.95. This work is significant as it provides a reliable framework for battery modelling that can assist companies in optimizing battery design and performance.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.