Characterizing the spatial potential of an ion trap chip

Chip Pub Date : 2025-03-01 DOI:10.1016/j.chip.2024.100126
Qingqing Qin , Ting Chen , Xinfang Zhang , Baoquan Ou , Jie Zhang , Chunwang Wu , Yi Xie , Wei Wu , Pingxing Chen
{"title":"Characterizing the spatial potential of an ion trap chip","authors":"Qingqing Qin ,&nbsp;Ting Chen ,&nbsp;Xinfang Zhang ,&nbsp;Baoquan Ou ,&nbsp;Jie Zhang ,&nbsp;Chunwang Wu ,&nbsp;Yi Xie ,&nbsp;Wei Wu ,&nbsp;Pingxing Chen","doi":"10.1016/j.chip.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate characterization of the spatial electric field generated by electrodes in a surface electrode trap is of paramount importance. In this pursuit, we have identified a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode. Leveraging this expression, we introduced an optimization method designed to accurately characterize the axial electric field intensity produced by the powered electrode and the stray field. Distinct from the existing methods, our approach integrates a diverse array of experimental data, including the equilibrium positions of ions in a linear string, the equilibrium positions of single trapped ions, and trap frequencies, to effectively reduce the systematic errors. This approach provides considerable flexibility in voltage settings for data acquisition, making it especially advantageous for surface electrode traps where the trapping height of ion probes may vary with casual voltage settings. In our experimental demonstration, we successfully minimized the discrepancy between observations and model predictions to a remarkable degree. The relative errors of secular frequencies were contained within ±0.5%, and the positional error of ions was constrained to less than 1.2 μm, which surpasses the performance of current methodologies.</div></div>","PeriodicalId":100244,"journal":{"name":"Chip","volume":"4 1","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chip","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2709472324000443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate characterization of the spatial electric field generated by electrodes in a surface electrode trap is of paramount importance. In this pursuit, we have identified a simple yet highly precise parametric expression to describe the spatial field of a rectangular-shaped electrode. Leveraging this expression, we introduced an optimization method designed to accurately characterize the axial electric field intensity produced by the powered electrode and the stray field. Distinct from the existing methods, our approach integrates a diverse array of experimental data, including the equilibrium positions of ions in a linear string, the equilibrium positions of single trapped ions, and trap frequencies, to effectively reduce the systematic errors. This approach provides considerable flexibility in voltage settings for data acquisition, making it especially advantageous for surface electrode traps where the trapping height of ion probes may vary with casual voltage settings. In our experimental demonstration, we successfully minimized the discrepancy between observations and model predictions to a remarkable degree. The relative errors of secular frequencies were contained within ±0.5%, and the positional error of ions was constrained to less than 1.2 μm, which surpasses the performance of current methodologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信