Soret and nonuniform heat source/sink effects in micropolar nanofluid flow over an inclined stretching sheet

Q1 Chemical Engineering
Machindranath Diwate , Pradeep G. Janthe , Nitiraj V. Kulkarni , S. Sunitha , Jagadish V. Tawade , Nodira Nazarova , Manish Gupta , Nadia Batool
{"title":"Soret and nonuniform heat source/sink effects in micropolar nanofluid flow over an inclined stretching sheet","authors":"Machindranath Diwate ,&nbsp;Pradeep G. Janthe ,&nbsp;Nitiraj V. Kulkarni ,&nbsp;S. Sunitha ,&nbsp;Jagadish V. Tawade ,&nbsp;Nodira Nazarova ,&nbsp;Manish Gupta ,&nbsp;Nadia Batool","doi":"10.1016/j.ijft.2025.101160","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the heat and mass transfer dynamics of micropolar nanofluid flow over a stretching sheet subjected to nonuniform heat sources/sinks. The influence of key factors, such as Brownian motion, thermophoresis, chemical reactions, and thermal radiation, on the velocity, temperature, and concentration profiles of the nanofluid is explored. The research employs advanced numerical methods, using the <em>bvp4c</em> solver, to solve the governing equations and compute the effects of various physical parameters on fluid dynamics. The results demonstrate that an increase in the magnetic field strength reduces the fluid velocity, while changes in material properties can lead to higher fluid speeds. Furthermore, the Soret effect significantly enhances mass transfer and the heat transfer at the surface diminishes as <em>A*</em> and <em>B*</em> increases, with implications for applications in separation technologies and desalination. A detailed analysis of the influence of the Soret number, Brownian motion, and thermophoresis reveals critical insights into thermal transport and solute distribution in the boundary layer. These findings have practical applications in cooling systems, biomedical engineering, and other industries where precise control of heat and mass transfer is crucial.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101160"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725001077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the heat and mass transfer dynamics of micropolar nanofluid flow over a stretching sheet subjected to nonuniform heat sources/sinks. The influence of key factors, such as Brownian motion, thermophoresis, chemical reactions, and thermal radiation, on the velocity, temperature, and concentration profiles of the nanofluid is explored. The research employs advanced numerical methods, using the bvp4c solver, to solve the governing equations and compute the effects of various physical parameters on fluid dynamics. The results demonstrate that an increase in the magnetic field strength reduces the fluid velocity, while changes in material properties can lead to higher fluid speeds. Furthermore, the Soret effect significantly enhances mass transfer and the heat transfer at the surface diminishes as A* and B* increases, with implications for applications in separation technologies and desalination. A detailed analysis of the influence of the Soret number, Brownian motion, and thermophoresis reveals critical insights into thermal transport and solute distribution in the boundary layer. These findings have practical applications in cooling systems, biomedical engineering, and other industries where precise control of heat and mass transfer is crucial.
微极性纳米流体在倾斜拉伸薄片上流动的非均匀热源/汇效应
本研究研究了微极性纳米流体在受非均匀热源/热源影响的拉伸薄片上的传热传质动力学。探讨了布朗运动、热泳、化学反应和热辐射等关键因素对纳米流体的速度、温度和浓度分布的影响。本研究采用先进的数值方法,利用bvp4c求解器求解控制方程,计算各种物理参数对流体动力学的影响。结果表明,磁场强度的增加会降低流体速度,而材料性能的变化会导致流体速度的提高。此外,Soret效应显著增强了传质,表面传热随着A*和B*的增加而减小,这对分离技术和海水淡化的应用具有重要意义。对索里特数、布朗运动和热泳运动影响的详细分析揭示了边界层中热输运和溶质分布的重要见解。这些发现在冷却系统、生物医学工程和其他精确控制传热传质至关重要的行业中具有实际应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信