Characteristics of triacetone triperoxide (TATP) formed in 2-propanol

IF 3.4 3区 工程技术 Q2 ENGINEERING, CIVIL
Geir P. Novik , Marianne Bolsønes , Ragnhild Ueland , Dennis Christensen
{"title":"Characteristics of triacetone triperoxide (TATP) formed in 2-propanol","authors":"Geir P. Novik ,&nbsp;Marianne Bolsønes ,&nbsp;Ragnhild Ueland ,&nbsp;Dennis Christensen","doi":"10.1016/j.firesaf.2025.104370","DOIUrl":null,"url":null,"abstract":"<div><div>There have been several reports of explosions occurring as a result of handling aged 2-propanol. Several of these explosions have resulted in injuries. In some of these incidents, the formation of an explosive substance most commonly named TATP (triacetone triperoxide; 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane) has been identified. Upon standing in the presence of air, it is known that 2-propanol under certain circumstances is inclined to form TATP; however, few studies have been carried out to determine its properties. Following a recent explosion in Norway involving 2-propanol, a noticeably large amount of a substance with a crystalline structure was discovered at the site of the accident. This substance was identified as TATP. The substance was analysed using nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) and liquid chromatography–mass spectrometry (LC–MS), and its sensitivity to friction was studied using the standardised BAM friction test. The study shows that TATP can be formed naturally in 2-propanol in the presence of air, and that its characteristics are similar to that of the traditionally laboratory synthesised substance. This implies that handling ageing 2-propanol containers could be associated with severe danger, as TATP formed in 2-propanol is found to be highly sensitive to external stimuli.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"153 ","pages":"Article 104370"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000347","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

There have been several reports of explosions occurring as a result of handling aged 2-propanol. Several of these explosions have resulted in injuries. In some of these incidents, the formation of an explosive substance most commonly named TATP (triacetone triperoxide; 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexoxonane) has been identified. Upon standing in the presence of air, it is known that 2-propanol under certain circumstances is inclined to form TATP; however, few studies have been carried out to determine its properties. Following a recent explosion in Norway involving 2-propanol, a noticeably large amount of a substance with a crystalline structure was discovered at the site of the accident. This substance was identified as TATP. The substance was analysed using nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) and liquid chromatography–mass spectrometry (LC–MS), and its sensitivity to friction was studied using the standardised BAM friction test. The study shows that TATP can be formed naturally in 2-propanol in the presence of air, and that its characteristics are similar to that of the traditionally laboratory synthesised substance. This implies that handling ageing 2-propanol containers could be associated with severe danger, as TATP formed in 2-propanol is found to be highly sensitive to external stimuli.

Abstract Image

在2-丙醇中生成的三过氧化三丙酮(TATP)的特性
有几起爆炸报告是由于处理老化的2-丙醇而发生的。其中几起爆炸造成人员受伤。在其中一些事故中,一种通常被称为TATP(三过氧化三丙酮;已经鉴定出3,3,6,6,9,9-六甲基(1,2,4,5,7,8-己酮)。在有空气存在的情况下,已知2-丙醇在某些情况下倾向于形成TATP;然而,很少有研究来确定它的性质。挪威最近发生了一起涉及2-丙醇的爆炸事故,在事故现场发现了大量具有晶体结构的物质。该物质被鉴定为TATP。采用核磁共振(NMR)、傅里叶变换红外(FT-IR)和液相色谱-质谱(LC-MS)对该物质进行分析,并采用标准化BAM摩擦试验研究其对摩擦的敏感性。该研究表明,TATP可以在有空气存在的2-丙醇中自然形成,其特性与传统的实验室合成物质相似。这意味着处理老化的2-丙醇容器可能会有严重的危险,因为在2-丙醇中形成的TATP对外界刺激高度敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire Safety Journal
Fire Safety Journal 工程技术-材料科学:综合
CiteScore
5.70
自引率
9.70%
发文量
153
审稿时长
60 days
期刊介绍: Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信