{"title":"Large time behavior of a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals","authors":"Miaoqing Tian , Fuxin Yu , Xinchun Gao , Jiahui Hu","doi":"10.1016/j.jmaa.2025.129471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi></math></span>, <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi></math></span>, subject to the homogeneous Neumann boundary conditions in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>(<span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>) with smooth boundary, where the parameters <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mi>Φ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>></mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>. The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when <span><math><mi>N</mi><mo><</mo><mn>4</mn></math></span>, as long as the diffusion mechanism of population <em>w</em> dominates with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, global boundedness of solutions can be guaranteed; if <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> or <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of <em>u</em> (or <em>w</em>) and the logistic source term of <em>w</em> (or <em>u</em>) dominate with <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> (or <span><math><mi>max</mi><mo></mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo></mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span>), the solutions are globally bounded. Also, we have proved that when the logistic source term of either <em>u</em> or <em>w</em> dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129471"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: , , , , subject to the homogeneous Neumann boundary conditions in a bounded domain () with smooth boundary, where the parameters , and with , , . The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when , as long as the diffusion mechanism of population w dominates with , global boundedness of solutions can be guaranteed; if or , i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of u (or w) and the logistic source term of w (or u) dominate with (or ), the solutions are globally bounded. Also, we have proved that when the logistic source term of either u or w dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.