Large time behavior of a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals

IF 1.2 3区 数学 Q1 MATHEMATICS
Miaoqing Tian , Fuxin Yu , Xinchun Gao , Jiahui Hu
{"title":"Large time behavior of a quasilinear two-species attraction-repulsion chemotaxis system with two chemicals","authors":"Miaoqing Tian ,&nbsp;Fuxin Yu ,&nbsp;Xinchun Gao ,&nbsp;Jiahui Hu","doi":"10.1016/j.jmaa.2025.129471","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: <span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>u</mi><mo>)</mo><mo>−</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>u</mi><mo>)</mo><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><msup><mrow><mi>u</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>w</mi></math></span>, <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>∇</mi><mo>⋅</mo><mo>(</mo><msub><mrow><mi>Φ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mi>∇</mi><mi>z</mi><mo>)</mo><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>w</mi><mo>−</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><msup><mrow><mi>w</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span>, <span><math><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>z</mi><mo>−</mo><mi>z</mi><mo>+</mo><mi>u</mi></math></span>, subject to the homogeneous Neumann boundary conditions in a bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>(<span><math><mi>N</mi><mo>≥</mo><mn>2</mn></math></span>) with smooth boundary, where the parameters <span><math><msub><mrow><mi>r</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msup><mo>,</mo><mspace></mspace><msub><mrow><mi>Φ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mi>s</mi><msup><mrow><mo>(</mo><mi>s</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup></math></span> with <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span>, <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mi>R</mi></math></span>, <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></math></span>. The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when <span><math><mi>N</mi><mo>&lt;</mo><mn>4</mn></math></span>, as long as the diffusion mechanism of population <em>w</em> dominates with <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mfrac><mrow><mn>4</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, global boundedness of solutions can be guaranteed; if <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> or <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>}</mo></math></span>, i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of <em>u</em> (or <em>w</em>) and the logistic source term of <em>w</em> (or <em>u</em>) dominate with <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span> (or <span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>}</mo><mo>≤</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn><mo>,</mo><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mo>}</mo></math></span>), the solutions are globally bounded. Also, we have proved that when the logistic source term of either <em>u</em> or <em>w</em> dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129471"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002525","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the quasilinear two-species attraction-repulsion chemotaxis system with two chemicals: ut=(D1(u)u)(Φ1(u)v)+r1uμ1uk1, 0=Δvv+w, wt=(D2(w)w)+(Φ2(w)z)+r2wμ2wk2, 0=Δzz+u, subject to the homogeneous Neumann boundary conditions in a bounded domain ΩRN(N2) with smooth boundary, where the parameters ri,μi>0, ki>1 and Di(s)=(s+1)pi,Φi(s)=χis(s+1)qi1 with χi>0, pi,qiR, i=1,2. The interactions among the diffusion, attraction, repulsion, and logistic sources in the system determine the behavior of solutions. It is showed that when N<4, as long as the diffusion mechanism of population w dominates with q2p2<4N, global boundedness of solutions can be guaranteed; if max{q1,q2}min{p1+2N,p2+2N} or max{q1,q2}min{k11,k21}, i.e. the diffusion mechanisms or the logistic source terms of populations u and w are both dominant, the solutions are globally bounded; when the diffusion mechanism of u (or w) and the logistic source term of w (or u) dominate with max{q1,q2}min{k21,p1+2N} (or max{q1,q2}min{k11,p2+2N}), the solutions are globally bounded. Also, we have proved that when the logistic source term of either u or w dominates, the global boundedness of the solutions can be obtained. Moreover, we give the large time behavior of the globally bounded solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信