{"title":"Thermo-fluidic characterization of a deployable pulsating heat pipe tested at different gravity levels","authors":"Roberta Perna , Mauro Mameli , Maksym Slobodeniuk , Luca Pagliarini , Cyril Romestant , Vincent Ayel , Fabio Bozzoli , Sauro Filippeschi","doi":"10.1016/j.tsep.2025.103479","DOIUrl":null,"url":null,"abstract":"<div><div>The present work describes the experimental investigation of a deployable Pulsating Heat Pipe (PHP) (i.e. the adiabatic section is shaped as a torsional spring) on ground and onboard a zero gravity aircraft to test its technological readiness level in microgravity/hypergravity conditions and to infer on the thermohydraulic effect of the 3D shape with respect to an equivalent standard PHP. For sake of comparison indeed, a planar horizontal PHP having the same length of the adiabatic section is developed as a reference case. The deployable PHP at 180-deg (i.e. unfolded configuration, evaporator and condenser on the same horizontal plane), is tested for two different coil orientations, up and down respectively, and compared to the planar one. The thermal resistances of the first (180-up) and the planar one in horizontal position are equivalent, while the second (180-down) reaches the highest thermal resistance. Weightlessness allows to suppress the gravitational force intrinsically present in a 3D shaped PHP when tested on ground, and thus enable operation even in the worst tested position (180-down). Therefore, the deployable PHP, filled with HFE7000 at 70 % filling ratio, is tested for three different opening configurations, namely, 0°, 90° and 180° down deploying angles, three different heat loads (14, 24, 34 W), under different gravity conditions (parabolic flight campaign). In normal gravity condition, the maximum temperature reached at the evaporator section was slightly affected by the mutual position of the evaporator and condenser (0–90-180 deg). Instead, the gravity field continuous variation (normal-hyper-micro) during each parabola enhances fluid oscillations, ensuring slug-plug flow at low heat input (14 W), for all configurations.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"61 ","pages":"Article 103479"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904925002690","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The present work describes the experimental investigation of a deployable Pulsating Heat Pipe (PHP) (i.e. the adiabatic section is shaped as a torsional spring) on ground and onboard a zero gravity aircraft to test its technological readiness level in microgravity/hypergravity conditions and to infer on the thermohydraulic effect of the 3D shape with respect to an equivalent standard PHP. For sake of comparison indeed, a planar horizontal PHP having the same length of the adiabatic section is developed as a reference case. The deployable PHP at 180-deg (i.e. unfolded configuration, evaporator and condenser on the same horizontal plane), is tested for two different coil orientations, up and down respectively, and compared to the planar one. The thermal resistances of the first (180-up) and the planar one in horizontal position are equivalent, while the second (180-down) reaches the highest thermal resistance. Weightlessness allows to suppress the gravitational force intrinsically present in a 3D shaped PHP when tested on ground, and thus enable operation even in the worst tested position (180-down). Therefore, the deployable PHP, filled with HFE7000 at 70 % filling ratio, is tested for three different opening configurations, namely, 0°, 90° and 180° down deploying angles, three different heat loads (14, 24, 34 W), under different gravity conditions (parabolic flight campaign). In normal gravity condition, the maximum temperature reached at the evaporator section was slightly affected by the mutual position of the evaporator and condenser (0–90-180 deg). Instead, the gravity field continuous variation (normal-hyper-micro) during each parabola enhances fluid oscillations, ensuring slug-plug flow at low heat input (14 W), for all configurations.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.