Identification of natural compounds as inhibitors of Clumping Factor A in Staphylococcus aureus to combat bovine mastitis: An in-Silico approach

IF 3.4 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Y.S. Mamatha , Sneha Murmu , Dwijesh Chandra Mishra , Mahender Kumar Singh , Sunil Kumar , Anu Sharma , Sudhir Srivastava , Krishna Kumar Chaturvedi , Monika Singh , Ulavappa Basavanneppa Angadi , Girish Kumar Jha , Shesh N. Rai
{"title":"Identification of natural compounds as inhibitors of Clumping Factor A in Staphylococcus aureus to combat bovine mastitis: An in-Silico approach","authors":"Y.S. Mamatha ,&nbsp;Sneha Murmu ,&nbsp;Dwijesh Chandra Mishra ,&nbsp;Mahender Kumar Singh ,&nbsp;Sunil Kumar ,&nbsp;Anu Sharma ,&nbsp;Sudhir Srivastava ,&nbsp;Krishna Kumar Chaturvedi ,&nbsp;Monika Singh ,&nbsp;Ulavappa Basavanneppa Angadi ,&nbsp;Girish Kumar Jha ,&nbsp;Shesh N. Rai","doi":"10.1016/j.bcab.2025.103556","DOIUrl":null,"url":null,"abstract":"<div><div>Bovine mastitis is a significant and economically impactful disease affecting dairy cattle globally, leading to decreased milk production, higher treatment costs, compromised genetic potential, animal mortality, and substantial economic losses. Mastitis is a major bovine disease caused by various organisms, with <em>Staphylococcus aureus</em> being one of the most virulent and prevalent pathogens responsible for bovine mastitis. The overuse of antibiotics has led to antimicrobial resistance and potential adverse effects on human health, necessitating the exploration of novel antibacterial therapeutics. This study employed computational methodologies, including structure-based virtual screening, molecular docking, ADMET prediction, and molecular dynamics (MD) simulations, to identify potential ClfA inhibitors of <em>Staphylococcus aureus</em>. A library of fifty-two natural compounds was screened, all exhibiting promising binding affinities (≤−8.0 kcal/mol). The top ten compounds underwent ADMET predictions, with seven satisfying Lipinski's rule of five and displaying pharmacokinetic properties. Further analysis using MD simulations was conducted on three compounds - Diaporthalasin, Oridonin, and Salvianolic acid A. Notably, Oridonin and Salvianolic acid exhibited strong stability in MD simulations, with RMSD values below 2.5 Å and consistent hydrogen bonding interactions with ClfA. Additionally, binding free energy calculations using MM-PBSA/MM-GBSA confirmed favorable interactions, with Oridonin exhibiting binding free energy of −30.4 kcal/mol and Salvianolic acid A at −28.7 kcal/mol. These findings suggest that Oridonin and Salvianolic Acid A can be considered for preclinical trials as potential candidates for veterinary drugs targeting mastitis caused by <em>S. aureus</em>.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":"65 ","pages":"Article 103556"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818125000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bovine mastitis is a significant and economically impactful disease affecting dairy cattle globally, leading to decreased milk production, higher treatment costs, compromised genetic potential, animal mortality, and substantial economic losses. Mastitis is a major bovine disease caused by various organisms, with Staphylococcus aureus being one of the most virulent and prevalent pathogens responsible for bovine mastitis. The overuse of antibiotics has led to antimicrobial resistance and potential adverse effects on human health, necessitating the exploration of novel antibacterial therapeutics. This study employed computational methodologies, including structure-based virtual screening, molecular docking, ADMET prediction, and molecular dynamics (MD) simulations, to identify potential ClfA inhibitors of Staphylococcus aureus. A library of fifty-two natural compounds was screened, all exhibiting promising binding affinities (≤−8.0 kcal/mol). The top ten compounds underwent ADMET predictions, with seven satisfying Lipinski's rule of five and displaying pharmacokinetic properties. Further analysis using MD simulations was conducted on three compounds - Diaporthalasin, Oridonin, and Salvianolic acid A. Notably, Oridonin and Salvianolic acid exhibited strong stability in MD simulations, with RMSD values below 2.5 Å and consistent hydrogen bonding interactions with ClfA. Additionally, binding free energy calculations using MM-PBSA/MM-GBSA confirmed favorable interactions, with Oridonin exhibiting binding free energy of −30.4 kcal/mol and Salvianolic acid A at −28.7 kcal/mol. These findings suggest that Oridonin and Salvianolic Acid A can be considered for preclinical trials as potential candidates for veterinary drugs targeting mastitis caused by S. aureus.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biocatalysis and agricultural biotechnology
Biocatalysis and agricultural biotechnology Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
7.70
自引率
2.50%
发文量
308
审稿时长
48 days
期刊介绍: Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信