Strengthening the Self-Assembly of Supramolecular Polymeric Nanotubes in Water via the Introduction of Hydrophobic Moieties

IF 5.1 Q1 POLYMER SCIENCE
Zihe Cheng, Stephen C. L. Hall, Qiao Song and Sébastien Perrier*, 
{"title":"Strengthening the Self-Assembly of Supramolecular Polymeric Nanotubes in Water via the Introduction of Hydrophobic Moieties","authors":"Zihe Cheng,&nbsp;Stephen C. L. Hall,&nbsp;Qiao Song and Sébastien Perrier*,&nbsp;","doi":"10.1021/acsmacrolett.4c0075910.1021/acsmacrolett.4c00759","DOIUrl":null,"url":null,"abstract":"<p >Supramolecular polymeric nanotubes based on the self-assembling cyclic peptide–polymer conjugates are a promising class of materials, showing great potential in various biological applications. Herein, we present a novel strategy to promote nanotube assembly through effectively shielding the cyclic peptides from water, via the introduction of varying hydrophobic groups. As determined by a combination of SANS, TEM, and SLS, hydrophobic interactions, π–π stacking, and multiple hydrogen bonding interactions cooperate in the self-assembly of the cyclic peptide–polymer conjugates, allowing for the construction of supramolecular nanotubes that are longer than expected in water. This approach offers an effective pathway toward the design of organic nanotubes of hundreds of nanometers in water.</p>","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"14 3","pages":"292–298 292–298"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmacrolett.4c00759","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular polymeric nanotubes based on the self-assembling cyclic peptide–polymer conjugates are a promising class of materials, showing great potential in various biological applications. Herein, we present a novel strategy to promote nanotube assembly through effectively shielding the cyclic peptides from water, via the introduction of varying hydrophobic groups. As determined by a combination of SANS, TEM, and SLS, hydrophobic interactions, π–π stacking, and multiple hydrogen bonding interactions cooperate in the self-assembly of the cyclic peptide–polymer conjugates, allowing for the construction of supramolecular nanotubes that are longer than expected in water. This approach offers an effective pathway toward the design of organic nanotubes of hundreds of nanometers in water.

基于自组装环肽-聚合物共轭物的超分子聚合物纳米管是一类前景广阔的材料,在各种生物应用中显示出巨大的潜力。在此,我们提出了一种新策略,通过引入不同的疏水基团,有效地屏蔽环肽与水的接触,从而促进纳米管的组装。根据 SANS、TEM 和 SLS 的综合测定,疏水相互作用、π-π 堆积和多种氢键相互作用在环肽-聚合物共轭物的自组装过程中相互配合,从而构建出在水中比预期更长的超分子纳米管。这种方法为在水中设计数百纳米的有机纳米管提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
3.40%
发文量
209
审稿时长
1 months
期刊介绍: ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science. With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信