Do Thao Anh, Nguyen La Ngoc Tran, Nguyen Bao Tran, Ta Ngoc Bach, Quan Doan Mai and Nhu Hoa Thi Tran*,
{"title":"Plasmonic Porous ZIF-8/Au NPs Platforms: A Complex Matrix Enhances SERS Substrate for Micromolar-Trace Detection of Several Analytes","authors":"Do Thao Anh, Nguyen La Ngoc Tran, Nguyen Bao Tran, Ta Ngoc Bach, Quan Doan Mai and Nhu Hoa Thi Tran*, ","doi":"10.1021/acs.langmuir.4c0489110.1021/acs.langmuir.4c04891","DOIUrl":null,"url":null,"abstract":"<p >Surface-enhanced Raman scattering (SERS) is an advantageous method for organic chemical and biological sensing. Benzoic acid, benzisothiazolinone, and thiram are common model compounds used to study the interaction of toxic substances with metal surfaces using SERS spectroscopy. Metal–organic frameworks, with their high porosity and large surface area, have recently received a lot of attention in sensing applications. Plasmonic porous structures are promising SERS substrates because of their high broadband charge-transfer resonance and reproducibility of fabrication. Furthermore, the exceptional enhancement of the electromagnetic field makes plasmonic nanomaterials ideal SERS substrates. In this study, we developed SERS substrates based on ZIF-8/Au NPs through a self-assembly process that forms stacked layers. The ZIF-8/Au NPs substrate demonstrated a remarkable ability to enhance Raman scattering, enabling ultrasensitive detection of various target molecules at micromolar concentrations. These attributes establish it as a promising SERS substrate for biosensing applications.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 10","pages":"6740–6746 6740–6746"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c04891","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface-enhanced Raman scattering (SERS) is an advantageous method for organic chemical and biological sensing. Benzoic acid, benzisothiazolinone, and thiram are common model compounds used to study the interaction of toxic substances with metal surfaces using SERS spectroscopy. Metal–organic frameworks, with their high porosity and large surface area, have recently received a lot of attention in sensing applications. Plasmonic porous structures are promising SERS substrates because of their high broadband charge-transfer resonance and reproducibility of fabrication. Furthermore, the exceptional enhancement of the electromagnetic field makes plasmonic nanomaterials ideal SERS substrates. In this study, we developed SERS substrates based on ZIF-8/Au NPs through a self-assembly process that forms stacked layers. The ZIF-8/Au NPs substrate demonstrated a remarkable ability to enhance Raman scattering, enabling ultrasensitive detection of various target molecules at micromolar concentrations. These attributes establish it as a promising SERS substrate for biosensing applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).