The effects of bandgap and porosity on catalysis and materials characteristics of layered carbon nitrides

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2025-03-17 DOI:10.1039/d4nr05353b
Esmail Doustkhah
{"title":"The effects of bandgap and porosity on catalysis and materials characteristics of layered carbon nitrides","authors":"Esmail Doustkhah","doi":"10.1039/d4nr05353b","DOIUrl":null,"url":null,"abstract":"In layered carbon nitrides, changing the C : N ratio and pore size can be a key to tuning their optical, adsorption, electronic and single-atom loading properties, as well as their band structures, bandgaps, and band edge levels. Such tuning can develop a favorable layered semiconductor, adsorbent, photo/electro-catalyst, or support material for loading catalytic species. Over the last few years, carbon nitride synthetic methods, monomers and modification methods (<em>i.e.</em>, doping) have been vastly investigated. However, the effects of the pore size and C : N ratio on catalysis, as well as other photo/electric properties, are worth further research. Here, I discuss the different types of layered carbon nitrides with a focus on the role of pores and the C : N ratio and crystal structure, and eventually their effect on various features such as conductivity, charge carrier mobility, optical activity, and catalytic activity.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"19 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr05353b","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In layered carbon nitrides, changing the C : N ratio and pore size can be a key to tuning their optical, adsorption, electronic and single-atom loading properties, as well as their band structures, bandgaps, and band edge levels. Such tuning can develop a favorable layered semiconductor, adsorbent, photo/electro-catalyst, or support material for loading catalytic species. Over the last few years, carbon nitride synthetic methods, monomers and modification methods (i.e., doping) have been vastly investigated. However, the effects of the pore size and C : N ratio on catalysis, as well as other photo/electric properties, are worth further research. Here, I discuss the different types of layered carbon nitrides with a focus on the role of pores and the C : N ratio and crystal structure, and eventually their effect on various features such as conductivity, charge carrier mobility, optical activity, and catalytic activity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信