Jiahui Li , Xiaofei Jing , Shulin Li , Lina Ma , Yuting Yang , Shuo Han , Jiangtao Jia , Cafer T. Yavuz , Guangshan Zhu
{"title":"Binder-free Pt/PAF membrane electrodes for durable, high-current-density hydrogen evolution","authors":"Jiahui Li , Xiaofei Jing , Shulin Li , Lina Ma , Yuting Yang , Shuo Han , Jiangtao Jia , Cafer T. Yavuz , Guangshan Zhu","doi":"10.1016/j.matt.2025.102047","DOIUrl":null,"url":null,"abstract":"<div><div>Pt and its derivatives, with their high reactivity and stability, are ideal electrocatalysts for the hydrogen evolution reaction (HER). Despite being the industrial standard in HERs, high current densities remain prohibitive due to the increased risk of leaching. Here, we report a practical and scalable strategy to prepare extremely stable Pt-based electrodes employing porous aromatic framework (PAF-260, -261, and -264) membranes instead of commercial Nafion binders to render fully exposed Pt nanocatalysts as well as faster electron and mass transfer. All electrodes exhibit excellent HER performances, continuously operating for more than 1,000 h at ampere-level current densities without losing activity. The precise placement of Pt-anchoring sulfur functionalities throughout the porous framework enables the homogeneous distribution of electrocatalysts that deliver continuous production of hydrogen, even in highly alkaline environments. The design principles from this study could unravel robust electrolyzers that could accelerate the transition to renewable fuels.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 4","pages":"Article 102047"},"PeriodicalIF":17.3000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525000906","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pt and its derivatives, with their high reactivity and stability, are ideal electrocatalysts for the hydrogen evolution reaction (HER). Despite being the industrial standard in HERs, high current densities remain prohibitive due to the increased risk of leaching. Here, we report a practical and scalable strategy to prepare extremely stable Pt-based electrodes employing porous aromatic framework (PAF-260, -261, and -264) membranes instead of commercial Nafion binders to render fully exposed Pt nanocatalysts as well as faster electron and mass transfer. All electrodes exhibit excellent HER performances, continuously operating for more than 1,000 h at ampere-level current densities without losing activity. The precise placement of Pt-anchoring sulfur functionalities throughout the porous framework enables the homogeneous distribution of electrocatalysts that deliver continuous production of hydrogen, even in highly alkaline environments. The design principles from this study could unravel robust electrolyzers that could accelerate the transition to renewable fuels.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.