Zhiwen Zhu, Guanchun Rui, Elshad Allahyarov, Honghu Zhang, Ruipeng Li, Philip L. Taylor, Lei Zhu
{"title":"Mechanisms of direct and converse piezoelectricity in ferroelectric polymers","authors":"Zhiwen Zhu, Guanchun Rui, Elshad Allahyarov, Honghu Zhang, Ruipeng Li, Philip L. Taylor, Lei Zhu","doi":"10.1016/j.polymer.2025.128290","DOIUrl":null,"url":null,"abstract":"Within the linear regime of mechanical and electrical responses, it is commonly accepted that direct and converse piezoelectric coefficients should be the same. However, we observed a consistently higher converse d<sub>31</sub> (∼ 54 pm/V) than the direct d<sub>31</sub> (∼42 pC/N) for a quenched, stretched, annealed, and electrically poled poly(vinylidene fluoride-<em>co</em>-trifluorethylene) [P(VDF-TrFE)] 52/48 mol.% sample (abbreviated as coP-52/48QSAP). On the contrary, the direct and converse d<sub>31</sub> values were the same for coP-65/35QSAP and coP-55/45QSAP. Small-angle X-ray scattering results showed that coP-52/48QSAP had a higher amount of relaxor-like secondary crystals (SCs) in the oriented amorphous fraction (OAF) (SC<sub>OAF</sub>) than coP-55/45QSAP and coP-65/35QSAP. To explain the experimental observation, we performed molecular dynamics (MD) simulation of the pure PVDF (without TrFE) to estimate direct and converse piezoelectricity for the PVDF OAF. Based on the MD simulation, the direct d<sub>31</sub> had a plateau value around 350 pC/N for the transverse (i.e., along the chain direction) strain up to 1%, whereas the simulated converse d<sub>31</sub> could be lower (for electric field E < 0.8 MV/m), equal (for E = 0.8 MV/m), or higher (for E > 0.8 MV/m) than the direct d<sub>31</sub>, depending on the poling electric field. From the MD simulation, both mechano-electrostriction and electrostatic interaction were identified in the OAF as the driving force for enhanced piezoelectricity in ferroelectric PVDF. When ferroelectric domains were formed in the OAF by electric poling, the simulated converse d<sub>31</sub> became higher than the direct d<sub>31</sub>. Combining both experimental and MD simulation results, the higher converse d<sub>31</sub> than direct d<sub>31</sub> for coP-52/48QSAP was understood qualitatively.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"55 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2025.128290","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Within the linear regime of mechanical and electrical responses, it is commonly accepted that direct and converse piezoelectric coefficients should be the same. However, we observed a consistently higher converse d31 (∼ 54 pm/V) than the direct d31 (∼42 pC/N) for a quenched, stretched, annealed, and electrically poled poly(vinylidene fluoride-co-trifluorethylene) [P(VDF-TrFE)] 52/48 mol.% sample (abbreviated as coP-52/48QSAP). On the contrary, the direct and converse d31 values were the same for coP-65/35QSAP and coP-55/45QSAP. Small-angle X-ray scattering results showed that coP-52/48QSAP had a higher amount of relaxor-like secondary crystals (SCs) in the oriented amorphous fraction (OAF) (SCOAF) than coP-55/45QSAP and coP-65/35QSAP. To explain the experimental observation, we performed molecular dynamics (MD) simulation of the pure PVDF (without TrFE) to estimate direct and converse piezoelectricity for the PVDF OAF. Based on the MD simulation, the direct d31 had a plateau value around 350 pC/N for the transverse (i.e., along the chain direction) strain up to 1%, whereas the simulated converse d31 could be lower (for electric field E < 0.8 MV/m), equal (for E = 0.8 MV/m), or higher (for E > 0.8 MV/m) than the direct d31, depending on the poling electric field. From the MD simulation, both mechano-electrostriction and electrostatic interaction were identified in the OAF as the driving force for enhanced piezoelectricity in ferroelectric PVDF. When ferroelectric domains were formed in the OAF by electric poling, the simulated converse d31 became higher than the direct d31. Combining both experimental and MD simulation results, the higher converse d31 than direct d31 for coP-52/48QSAP was understood qualitatively.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.