The Cooperative Effects of the Rh-M Dual-Metal Atomic Pairs in Formic Acid Oxidation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Runze Ma, Jin Zhang, Jiaxin Gong, Yunxiang Lin, Jialin Zhang, Zheng-Qing Huang, Chun-Ran Chang, Shoujie Liu, Wei Zhu, Yuxin Wang, Ke Zeng, Yu Tao, Jinhua Hu, Zedong Zhang, Xiao Liang, Yunhu Han, Junjie Mao, Zechao Zhuang, Jun Yan, Dingsheng Wang, Yu Xiong
{"title":"The Cooperative Effects of the Rh-M Dual-Metal Atomic Pairs in Formic Acid Oxidation","authors":"Runze Ma, Jin Zhang, Jiaxin Gong, Yunxiang Lin, Jialin Zhang, Zheng-Qing Huang, Chun-Ran Chang, Shoujie Liu, Wei Zhu, Yuxin Wang, Ke Zeng, Yu Tao, Jinhua Hu, Zedong Zhang, Xiao Liang, Yunhu Han, Junjie Mao, Zechao Zhuang, Jun Yan, Dingsheng Wang, Yu Xiong","doi":"10.1002/anie.202503095","DOIUrl":null,"url":null,"abstract":"The continuously increasing mass activity in formic acid oxidation reaction (FAOR) is the key to achieving the practical application of direct formic acid fuel cells (DFAFCs). Herein, Rh-based dual-metal atomic pairs supported on nitrogen-doped carbon catalysts [DAP-(M, Rh)/CN] with adjacent interatomic Rh-M (M = V, Cr, Mn, Fe, Co, Ni, Cu) have been synthesized by a “host-guest” strategy. We discovered that DAP-(Cr, Rh)/CN shows the highest mass activity of 64.1 A·mg-1, which is 3.8 times higher than that of the single atom Rh catalyst (17.0 A·mg-1) and two orders of magnitude higher than Pd/C (0.58 A·mg-1). Interestingly, the mass activity of DAP-(M, Rh)/CN firstly increases from 11.7 A·mg-1 (Rh-V) to 64.1 A·mg-1 (Rh-Cr) and then decreases to 21.8 A·mg-1 (Rh-Cu), forming a volcano curve of the reaction activity. Density functional theory calculations combined with in-situ Fourier transform infrared spectrometer (FTIR) spectra reveal that formic acid oxidized on a series of DAP-(M, Rh)/CN catalysts through the formate route with the subsidiary M metal atoms binding the HCOO species and the Rh atom accepting the H atoms. The most suitable adsorption strength of HCOO on the Cr sites luckily contributes to two spontaneous elementary steps and thus accelerate the FAOR rates.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"17 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202503095","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The continuously increasing mass activity in formic acid oxidation reaction (FAOR) is the key to achieving the practical application of direct formic acid fuel cells (DFAFCs). Herein, Rh-based dual-metal atomic pairs supported on nitrogen-doped carbon catalysts [DAP-(M, Rh)/CN] with adjacent interatomic Rh-M (M = V, Cr, Mn, Fe, Co, Ni, Cu) have been synthesized by a “host-guest” strategy. We discovered that DAP-(Cr, Rh)/CN shows the highest mass activity of 64.1 A·mg-1, which is 3.8 times higher than that of the single atom Rh catalyst (17.0 A·mg-1) and two orders of magnitude higher than Pd/C (0.58 A·mg-1). Interestingly, the mass activity of DAP-(M, Rh)/CN firstly increases from 11.7 A·mg-1 (Rh-V) to 64.1 A·mg-1 (Rh-Cr) and then decreases to 21.8 A·mg-1 (Rh-Cu), forming a volcano curve of the reaction activity. Density functional theory calculations combined with in-situ Fourier transform infrared spectrometer (FTIR) spectra reveal that formic acid oxidized on a series of DAP-(M, Rh)/CN catalysts through the formate route with the subsidiary M metal atoms binding the HCOO species and the Rh atom accepting the H atoms. The most suitable adsorption strength of HCOO on the Cr sites luckily contributes to two spontaneous elementary steps and thus accelerate the FAOR rates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信