{"title":"Recrystallization-Driven Quasi-Spherical Prussian Blue Analogs with High Tap Density and Crystallinity for Sodium-Ion Batteries","authors":"Siwei Fan, Yun Gao, Yang Liu, Li Li, Lingling Zhang, Zhiming Zhou, Shu-Lei Chou, Xueting Liu, Yue Shen, Yunhui Huang, Yun Qiao","doi":"10.1021/acsenergylett.5c00080","DOIUrl":null,"url":null,"abstract":"Prussian blue analogs (PBAs) are widely applicable as cathode materials due to their straightforward synthesis procedures, low cost, and considerable theoretical capacity. However, structural defects and low tap density pose substantial challenges to their commercial application. Herein, we propose a recrystallization-driven strategy to synthesize monoclinic binary hexacyanoferrate (CFHCF) with high crystallinity and a remarkably high tap density of 0.992 g cm<sup>–3</sup>. Moreover, the detailed process of quasi-spherical morphology evolution and defect repair is systematically investigated during recrystallization. Furthermore, various in situ and ex situ techniques are employed to reveal the origin of the high specific capacity and the structural evolution mechanism. Additionally, the designed CFHCF//HC pouch cell demonstrates satisfactory capacity retention over 250 cycles and successfully powers a toy platform for flag raising and lowering. Notably, this recrystallization-driven strategy offers valuable insights into the synthesis and commercial applications of highly crystallized PBAs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"183 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00080","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prussian blue analogs (PBAs) are widely applicable as cathode materials due to their straightforward synthesis procedures, low cost, and considerable theoretical capacity. However, structural defects and low tap density pose substantial challenges to their commercial application. Herein, we propose a recrystallization-driven strategy to synthesize monoclinic binary hexacyanoferrate (CFHCF) with high crystallinity and a remarkably high tap density of 0.992 g cm–3. Moreover, the detailed process of quasi-spherical morphology evolution and defect repair is systematically investigated during recrystallization. Furthermore, various in situ and ex situ techniques are employed to reveal the origin of the high specific capacity and the structural evolution mechanism. Additionally, the designed CFHCF//HC pouch cell demonstrates satisfactory capacity retention over 250 cycles and successfully powers a toy platform for flag raising and lowering. Notably, this recrystallization-driven strategy offers valuable insights into the synthesis and commercial applications of highly crystallized PBAs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.