Saswata Dasgupta, Giuseppe Cassone, Francesco Paesani
{"title":"Nuclear Quantum Effects and the Grotthuss Mechanism Dictate the pH of Liquid Water","authors":"Saswata Dasgupta, Giuseppe Cassone, Francesco Paesani","doi":"10.1021/acs.jpclett.5c00168","DOIUrl":null,"url":null,"abstract":"Water’s ability to autoionize into hydronium (H<sub>3</sub>O<sup>+</sup>) and hydroxide (OH<sup>–</sup>) ions dictates the acidity or basicity of aqueous solutions, influencing the reaction pathways of many chemical and biochemical processes. In this study, we determine the molecular mechanism of the autoionization process by leveraging both the computational efficiency of a deep neural network potential trained on highly accurate data calculated within density-corrected density functional theory and the ability of enhanced sampling techniques to ensure a comprehensive exploration of the underlying multidimensional free-energy landscape. By properly accounting for nuclear quantum effects, our simulations provide an accurate estimate of the autoionization constant of liquid water (p<i>K</i><sub>w</sub> = 13.71 ± 0.16), offering a realistic molecular-level picture of the autoionization process and emphasizing its quantum-mechanical nature. Importantly, our simulations highlight the central role played by the Grotthuss mechanism in stabilizing solvent-separated ion pair configurations, revealing its profound impact on acid–base equilibria in aqueous environments.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"202 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00168","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Water’s ability to autoionize into hydronium (H3O+) and hydroxide (OH–) ions dictates the acidity or basicity of aqueous solutions, influencing the reaction pathways of many chemical and biochemical processes. In this study, we determine the molecular mechanism of the autoionization process by leveraging both the computational efficiency of a deep neural network potential trained on highly accurate data calculated within density-corrected density functional theory and the ability of enhanced sampling techniques to ensure a comprehensive exploration of the underlying multidimensional free-energy landscape. By properly accounting for nuclear quantum effects, our simulations provide an accurate estimate of the autoionization constant of liquid water (pKw = 13.71 ± 0.16), offering a realistic molecular-level picture of the autoionization process and emphasizing its quantum-mechanical nature. Importantly, our simulations highlight the central role played by the Grotthuss mechanism in stabilizing solvent-separated ion pair configurations, revealing its profound impact on acid–base equilibria in aqueous environments.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.