Re-defining Non-tracking Solar Cell Efficiency Limits with Directional Spectral Filters

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alan R. Bowman, Samuel D. Stranks, Giulia Tagliabue
{"title":"Re-defining Non-tracking Solar Cell Efficiency Limits with Directional Spectral Filters","authors":"Alan R. Bowman, Samuel D. Stranks, Giulia Tagliabue","doi":"10.1021/acsphotonics.4c02181","DOIUrl":null,"url":null,"abstract":"Optical filters that respond to the wavelength and direction of incident light can be used to increase the efficiency of tracking solar cells. However, as tracking solar cells are more expensive to install and maintain, it is likely that nontracking solar cells will remain the main product of the (terrestrial) solar cell industry. Here we demonstrate that directional spectral filters can also be used to increase the efficiency limit of nontracking solar cells at the equator beyond what is currently understood by up to ∼0.5% (relative ∼1.8%). We also reveal that such filters can be used to regulate the energy output of solar cells throughout a day or year, and can reduce the thickness of the absorber layer by up to 40%. We anticipate that similar gains would be seen at other latitudes. As this filter has complex wavelength-direction functionality, we present a proof-of-concept design based on Luneburg lenses, demonstrating these filters can be realized. Our results will enable solar cells with higher efficiency and more stable output while using less material.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"22 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02181","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Optical filters that respond to the wavelength and direction of incident light can be used to increase the efficiency of tracking solar cells. However, as tracking solar cells are more expensive to install and maintain, it is likely that nontracking solar cells will remain the main product of the (terrestrial) solar cell industry. Here we demonstrate that directional spectral filters can also be used to increase the efficiency limit of nontracking solar cells at the equator beyond what is currently understood by up to ∼0.5% (relative ∼1.8%). We also reveal that such filters can be used to regulate the energy output of solar cells throughout a day or year, and can reduce the thickness of the absorber layer by up to 40%. We anticipate that similar gains would be seen at other latitudes. As this filter has complex wavelength-direction functionality, we present a proof-of-concept design based on Luneburg lenses, demonstrating these filters can be realized. Our results will enable solar cells with higher efficiency and more stable output while using less material.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信