Modulating the Catalytic Properties of Decavanadate Hybrids Using a Mixed Counterion Strategy for Selective Oxidation of Thiophene-based Sulfides and Detoxification of Mustard Gas Simulant

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Chullikkattil P. Pradeep, Kousik Routh, Aranya Kar
{"title":"Modulating the Catalytic Properties of Decavanadate Hybrids Using a Mixed Counterion Strategy for Selective Oxidation of Thiophene-based Sulfides and Detoxification of Mustard Gas Simulant","authors":"Chullikkattil P. Pradeep, Kousik Routh, Aranya Kar","doi":"10.1039/d5dt00102a","DOIUrl":null,"url":null,"abstract":"Selective oxidation of sulfides to sulfoxides, especially thiophene-based sulfides, is a challenging task. Herein, we report a mixed counterion strategy to tune the selectivity of sulfoxidation reaction catalyzed by decavanadate cluster-based hybrids using H2O2 as the oxidant under ambient conditions. By employing two different aryl sulfonium counterions (ASCIs) bearing different organic functional groups (phenol/aldehyde/salicylaldehyde/2,6-diformyl phenol) in a 1:1 synthetic feed ratio, we have generated a series of decavanadate cluster-based hybrids HY1-HY6. Different functional groups on the periphery of hybrids HY1-HY6 helped control the efficiency and selectivity of the sulfoxidation reaction by fine-tuning the electronic and supramolecular effects of these hybrids as catalysts. Further, these hybrids were also applied as catalysts for detoxifying 2-chloroethyl ethyl sulfide (CEES), a mustard gas simulant. The hybrid HY5, with a structural formula (DFHPDS)2(FPDS)2[H2V10O28](H2O)3(DFHPDS = (3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium, and FPDS = (4-formylphenyl)dimethylsulfonium) showed the best catalytic properties in the series, with up to 99 % conversion and 85 % and 99 % selectivity towards sulfoxide in the case of dibenzothiophene (DBT) and CEES, respectively. This study's findings open new avenues for tuning the catalytic properties of POM-based hybrids toward selective organic transformation reactions by using a mixed counterion strategy.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"42 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5dt00102a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Selective oxidation of sulfides to sulfoxides, especially thiophene-based sulfides, is a challenging task. Herein, we report a mixed counterion strategy to tune the selectivity of sulfoxidation reaction catalyzed by decavanadate cluster-based hybrids using H2O2 as the oxidant under ambient conditions. By employing two different aryl sulfonium counterions (ASCIs) bearing different organic functional groups (phenol/aldehyde/salicylaldehyde/2,6-diformyl phenol) in a 1:1 synthetic feed ratio, we have generated a series of decavanadate cluster-based hybrids HY1-HY6. Different functional groups on the periphery of hybrids HY1-HY6 helped control the efficiency and selectivity of the sulfoxidation reaction by fine-tuning the electronic and supramolecular effects of these hybrids as catalysts. Further, these hybrids were also applied as catalysts for detoxifying 2-chloroethyl ethyl sulfide (CEES), a mustard gas simulant. The hybrid HY5, with a structural formula (DFHPDS)2(FPDS)2[H2V10O28](H2O)3(DFHPDS = (3,5-diformyl-4-hydroxyphenyl)dimethylsulfonium, and FPDS = (4-formylphenyl)dimethylsulfonium) showed the best catalytic properties in the series, with up to 99 % conversion and 85 % and 99 % selectivity towards sulfoxide in the case of dibenzothiophene (DBT) and CEES, respectively. This study's findings open new avenues for tuning the catalytic properties of POM-based hybrids toward selective organic transformation reactions by using a mixed counterion strategy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信