De novo biosynthesis of plant lignans by synthetic yeast consortia

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruibing Chen, Xianghui Chen, Yu Chen, Jindong Yang, Wansheng Chen, Yongjin J. Zhou, Lei Zhang
{"title":"De novo biosynthesis of plant lignans by synthetic yeast consortia","authors":"Ruibing Chen, Xianghui Chen, Yu Chen, Jindong Yang, Wansheng Chen, Yongjin J. Zhou, Lei Zhang","doi":"10.1038/s41589-025-01861-z","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing the biosynthesis of complex natural products such as lignans in yeast is challenging and can result in metabolic promiscuity, affecting the biosynthetic efficiency. Here we divide the lignan biosynthetic pathway across a synthetic yeast consortium with obligated mutualism and use ferulic acid as a metabolic bridge. This cooperative system successfully overcomes the metabolic promiscuity and synthesizes the common precursor, coniferyl alcohol. Furthermore, combined with systematic engineering strategies, we achieve the de novo synthesis of key lignan skeletons, pinoresinol and lariciresinol, and verify the scalability of the consortium by synthesizing complex lignans, including antiviral lariciresinol diglucoside. These results provide a starting engineering platform for the heterologous synthesis of lignans. In particular, the study illustrates that the yeast consortium with obligate mutualism is a promising strategy that mimics the metabolic division of labor among multiple plant cells, thereby improving the biosynthesis of long pathways and complex natural products.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"16 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01861-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reconstructing the biosynthesis of complex natural products such as lignans in yeast is challenging and can result in metabolic promiscuity, affecting the biosynthetic efficiency. Here we divide the lignan biosynthetic pathway across a synthetic yeast consortium with obligated mutualism and use ferulic acid as a metabolic bridge. This cooperative system successfully overcomes the metabolic promiscuity and synthesizes the common precursor, coniferyl alcohol. Furthermore, combined with systematic engineering strategies, we achieve the de novo synthesis of key lignan skeletons, pinoresinol and lariciresinol, and verify the scalability of the consortium by synthesizing complex lignans, including antiviral lariciresinol diglucoside. These results provide a starting engineering platform for the heterologous synthesis of lignans. In particular, the study illustrates that the yeast consortium with obligate mutualism is a promising strategy that mimics the metabolic division of labor among multiple plant cells, thereby improving the biosynthesis of long pathways and complex natural products.

Abstract Image

合成酵母菌群对植物木脂素的重新生物合成
重建酵母中复杂天然产物如木脂素的生物合成是具有挑战性的,并且可能导致代谢乱交,影响生物合成效率。在这里,我们将木脂素生物合成途径划分为一个具有义务互惠作用的合成酵母联合体,并使用阿魏酸作为代谢桥梁。这个合作系统成功地克服了代谢混杂,合成了共同的前体松柏醇。此外,结合系统工程策略,我们实现了关键木脂素骨架、松脂醇和松脂醇的从头合成,并通过合成包括抗病毒松脂醇二葡糖苷在内的复合木脂素验证了该联盟的可扩展性。这些结果为木脂素的异源合成提供了起点工程平台。特别是,该研究表明,具有专用性互惠的酵母联合体是一种很有前途的策略,它模仿了多个植物细胞之间的代谢分工,从而改善了长途径和复杂天然产物的生物合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信