Ruibing Chen, Xianghui Chen, Yu Chen, Jindong Yang, Wansheng Chen, Yongjin J. Zhou, Lei Zhang
{"title":"De novo biosynthesis of plant lignans by synthetic yeast consortia","authors":"Ruibing Chen, Xianghui Chen, Yu Chen, Jindong Yang, Wansheng Chen, Yongjin J. Zhou, Lei Zhang","doi":"10.1038/s41589-025-01861-z","DOIUrl":null,"url":null,"abstract":"<p>Reconstructing the biosynthesis of complex natural products such as lignans in yeast is challenging and can result in metabolic promiscuity, affecting the biosynthetic efficiency. Here we divide the lignan biosynthetic pathway across a synthetic yeast consortium with obligated mutualism and use ferulic acid as a metabolic bridge. This cooperative system successfully overcomes the metabolic promiscuity and synthesizes the common precursor, coniferyl alcohol. Furthermore, combined with systematic engineering strategies, we achieve the de novo synthesis of key lignan skeletons, pinoresinol and lariciresinol, and verify the scalability of the consortium by synthesizing complex lignans, including antiviral lariciresinol diglucoside. These results provide a starting engineering platform for the heterologous synthesis of lignans. In particular, the study illustrates that the yeast consortium with obligate mutualism is a promising strategy that mimics the metabolic division of labor among multiple plant cells, thereby improving the biosynthesis of long pathways and complex natural products.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"16 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01861-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reconstructing the biosynthesis of complex natural products such as lignans in yeast is challenging and can result in metabolic promiscuity, affecting the biosynthetic efficiency. Here we divide the lignan biosynthetic pathway across a synthetic yeast consortium with obligated mutualism and use ferulic acid as a metabolic bridge. This cooperative system successfully overcomes the metabolic promiscuity and synthesizes the common precursor, coniferyl alcohol. Furthermore, combined with systematic engineering strategies, we achieve the de novo synthesis of key lignan skeletons, pinoresinol and lariciresinol, and verify the scalability of the consortium by synthesizing complex lignans, including antiviral lariciresinol diglucoside. These results provide a starting engineering platform for the heterologous synthesis of lignans. In particular, the study illustrates that the yeast consortium with obligate mutualism is a promising strategy that mimics the metabolic division of labor among multiple plant cells, thereby improving the biosynthesis of long pathways and complex natural products.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.