Measurements of attenuation and scattering properties of water-based liquid scintillator

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Jake J. Hecla, Oluwatomi Akindele, Steven Dazeley, Adam Bernstein, Emily Gunger
{"title":"Measurements of attenuation and scattering properties of water-based liquid scintillator","authors":"Jake J. Hecla, Oluwatomi Akindele, Steven Dazeley, Adam Bernstein, Emily Gunger","doi":"10.1103/physrevd.111.052005","DOIUrl":null,"url":null,"abstract":"Water-based liquid scintillator (WbLS) is a hybrid detector medium which has been proposed as a fill material for future large-volume rare event searches, including ν</a:mi>−</a:mo></a:math> detectors. This family of scintillating suspensions promises waterlike attenuation and scattering behavior, while offering scintillation light yield for sub-Cherenkov-threshold events. These features may allow for improved vertex and energy resolution, and concomitant improvements in background rejection and particle identification. While subscale measurements of light yield, timing and pulse-shape have been performed in several WbLS formulations, detailed measurements of the attenuation and scattering properties of WbLS remain a critical, unresolved step along the pathway to deployment. In pursuit of a better understanding of these parameters, a “long-arm” attenuation and scattering instrument has been developed at Lawrence Livermore National Laboratory, dubbed LASE (Livermore Attenuation and Scattering Experiment). Optical property measurements have been performed using LASE in DI water, Gd-water, WbLS and Gd-WbLS. Measurements of the optical properties of WbLS (1% LAB-PPO scintillator) provided by Brookhaven National Laboratory demonstrate an attenuation minimum of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mrow><c:mn>4.87</c:mn><c:mo>×</c:mo><c:msup><c:mrow><c:mn>10</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>4</c:mn></c:mrow></c:msup></c:mrow><c:mo>±</c:mo><c:mrow><c:mn>1.42</c:mn><c:mo>×</c:mo><c:msup><c:mrow><c:mn>10</c:mn></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>4</c:mn></c:mrow></c:msup><c:mtext> </c:mtext><c:mtext> </c:mtext><c:msup><c:mrow><c:mi>cm</c:mi></c:mrow><c:mrow><c:mo>−</c:mo><c:mn>1</c:mn></c:mrow></c:msup></c:mrow></c:mrow></c:math> at 450 nm, while Gd-loaded WbLS (1% LAB-PPO scintillator, 0.1% Gd) demonstrated a minimum attenuation coefficient of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mrow><e:mn>4.77</e:mn><e:mo>×</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>4</e:mn></e:mrow></e:msup></e:mrow><e:mo>±</e:mo><e:mrow><e:mn>1.27</e:mn><e:mo>×</e:mo><e:msup><e:mrow><e:mn>10</e:mn></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>4</e:mn></e:mrow></e:msup><e:mtext> </e:mtext><e:mtext> </e:mtext><e:msup><e:mrow><e:mi>cm</e:mi></e:mrow><e:mrow><e:mo>−</e:mo><e:mn>1</e:mn></e:mrow></e:msup></e:mrow></e:mrow></e:math> at the same wavelength. Measurements of scattering in WbLS show a scattering coefficient of <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mrow><g:mn>3.39</g:mn><g:mo>×</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>4</g:mn></g:mrow></g:msup></g:mrow><g:mo>±</g:mo><g:mrow><g:mn>1.98</g:mn><g:mo>×</g:mo><g:msup><g:mrow><g:mn>10</g:mn></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>5</g:mn></g:mrow></g:msup></g:mrow><g:mtext> </g:mtext><g:mtext> </g:mtext><g:msup><g:mrow><g:mi>cm</g:mi></g:mrow><g:mrow><g:mo>−</g:mo><g:mn>1</g:mn></g:mrow></g:msup></g:mrow></g:math> at the 450 nm attenuation minimum, while Gd-WbLS has a scattering coefficient of <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mrow><i:mrow><i:mn>2.8</i:mn><i:mo>×</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>4</i:mn></i:mrow></i:msup></i:mrow><i:mo>±</i:mo><i:mrow><i:mn>1.63</i:mn><i:mo>×</i:mo><i:msup><i:mrow><i:mn>10</i:mn></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>5</i:mn></i:mrow></i:msup></i:mrow><i:mtext> </i:mtext><i:mtext> </i:mtext><i:msup><i:mrow><i:mi>cm</i:mi></i:mrow><i:mrow><i:mo>−</i:mo><i:mn>1</i:mn></i:mrow></i:msup></i:mrow></i:math> at that wavelength. These scattering and attenuation coefficients are significantly larger than measured for DI water at similar wavelengths (<k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mrow><k:mn>8.8</k:mn><k:mo>×</k:mo><k:msup><k:mrow><k:mn>10</k:mn></k:mrow><k:mrow><k:mo>−</k:mo><k:mn>5</k:mn></k:mrow></k:msup></k:mrow><k:mtext> </k:mtext><k:mtext> </k:mtext><k:msup><k:mrow><k:mi>cm</k:mi></k:mrow><k:mrow><k:mo>−</k:mo><k:mn>1</k:mn></k:mrow></k:msup><k:mo>±</k:mo><k:mrow><k:mn>3.8</k:mn><k:mo>×</k:mo><k:msup><k:mrow><k:mn>10</k:mn></k:mrow><k:mrow><k:mo>−</k:mo><k:mn>5</k:mn></k:mrow></k:msup></k:mrow></k:mrow></k:math> attenuation at 430 nm, <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mrow><m:mrow><m:mn>2.2</m:mn><m:mo>×</m:mo><m:msup><m:mrow><m:mn>10</m:mn></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>5</m:mn></m:mrow></m:msup></m:mrow><m:mo>±</m:mo><m:mrow><m:mn>1.28</m:mn><m:mo>×</m:mo><m:msup><m:mrow><m:mn>10</m:mn></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>6</m:mn></m:mrow></m:msup></m:mrow><m:mtext> </m:mtext><m:mtext> </m:mtext><m:msup><m:mrow><m:mi>cm</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>1</m:mn></m:mrow></m:msup></m:mrow></m:math> scattering). Though the WbLS attenuation and scattering coefficients measured are lower than the corresponding values published for ultrapure oils and LAB-PPO liquid scintillator, the material tested attenuates significantly more than water across the blue and green portions of the visible spectrum. This attenuation is markedly stronger at wavelengths under 430 nm. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"55 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.052005","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Water-based liquid scintillator (WbLS) is a hybrid detector medium which has been proposed as a fill material for future large-volume rare event searches, including ν− detectors. This family of scintillating suspensions promises waterlike attenuation and scattering behavior, while offering scintillation light yield for sub-Cherenkov-threshold events. These features may allow for improved vertex and energy resolution, and concomitant improvements in background rejection and particle identification. While subscale measurements of light yield, timing and pulse-shape have been performed in several WbLS formulations, detailed measurements of the attenuation and scattering properties of WbLS remain a critical, unresolved step along the pathway to deployment. In pursuit of a better understanding of these parameters, a “long-arm” attenuation and scattering instrument has been developed at Lawrence Livermore National Laboratory, dubbed LASE (Livermore Attenuation and Scattering Experiment). Optical property measurements have been performed using LASE in DI water, Gd-water, WbLS and Gd-WbLS. Measurements of the optical properties of WbLS (1% LAB-PPO scintillator) provided by Brookhaven National Laboratory demonstrate an attenuation minimum of 4.87×104±1.42×104 cm1 at 450 nm, while Gd-loaded WbLS (1% LAB-PPO scintillator, 0.1% Gd) demonstrated a minimum attenuation coefficient of 4.77×104±1.27×104 cm1 at the same wavelength. Measurements of scattering in WbLS show a scattering coefficient of 3.39×104±1.98×105 cm1 at the 450 nm attenuation minimum, while Gd-WbLS has a scattering coefficient of 2.8×104±1.63×105 cm1 at that wavelength. These scattering and attenuation coefficients are significantly larger than measured for DI water at similar wavelengths (8.8×105 cm1±3.8×105 attenuation at 430 nm, 2.2×105±1.28×106 cm1 scattering). Though the WbLS attenuation and scattering coefficients measured are lower than the corresponding values published for ultrapure oils and LAB-PPO liquid scintillator, the material tested attenuates significantly more than water across the blue and green portions of the visible spectrum. This attenuation is markedly stronger at wavelengths under 430 nm. Published by the American Physical Society 2025
水基液体闪烁体衰减和散射特性的测量
水基液体闪烁体(WbLS)是一种混合探测器介质,被认为是未来大体积稀有事件搜索(包括ν−探测器)的填充材料。该系列闪烁悬浮液承诺水状衰减和散射行为,同时为亚切伦科夫阈值事件提供闪烁光产率。这些特征可以提高顶点和能量分辨率,同时提高背景抑制和粒子识别能力。虽然已经在几种WbLS配方中进行了光产率、定时和脉冲形状的亚尺度测量,但在部署过程中,对WbLS衰减和散射特性的详细测量仍然是一个关键的、尚未解决的步骤。为了更好地理解这些参数,劳伦斯利弗莫尔国家实验室开发了一种“长臂”衰减和散射仪器,称为LASE(利弗莫尔衰减和散射实验)。利用LASE在DI水、Gd-water、WbLS和Gd-WbLS中进行了光学性能测量。布鲁克海文国家实验室提供的WbLS (1% LAB-PPO闪烁体)在450 nm处的最小衰减系数为4.87×10−4±1.42×10−4 cm−1,而负载Gd的WbLS (1% LAB-PPO闪烁体,0.1% Gd)在相同波长处的最小衰减系数为4.77×10−4±1.27×10−4 cm−1。WbLS的散射测量结果表明,在450 nm的最小衰减处,WbLS的散射系数为3.39×10−4±1.98×10−5 cm−1,而Gd-WbLS在该波长的散射系数为2.8×10−4±1.63×10−5 cm−1。这些散射和衰减系数明显大于相似波长下的去离子水(在430 nm处8.8×10−5 cm−1±3.8×10−5衰减,2.2×10−5±1.28×10−6 cm−1散射)。虽然测量到的WbLS衰减和散射系数低于公布的超纯油和LAB-PPO液体闪烁体的相应值,但在所测材料在可见光谱的蓝色和绿色部分的衰减明显大于水。这种衰减在430nm以下的波长处明显更强。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信