Parametric solutions to the Kerr separatrix

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Tammy Ng and Edward Teo
{"title":"Parametric solutions to the Kerr separatrix","authors":"Tammy Ng and Edward Teo","doi":"10.1088/1361-6382/adba36","DOIUrl":null,"url":null,"abstract":"The Kerr separatrix is a boundary in parameter space that separates bound orbits from plunging orbits in the Kerr black hole space-time. Recently, Stein and Warburton found a polynomial equation for the location of the separatrix, for two different choices of inclination parameter. Following a method of Levin and Perez-Giz developed for the equatorial case, we use a correspondence between homoclinic orbits and unstable spherical orbits to derive explicit solutions to the separatrix polynomials. These solutions are parametrised in terms of the radius of the unstable spherical orbit.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"51 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adba36","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Kerr separatrix is a boundary in parameter space that separates bound orbits from plunging orbits in the Kerr black hole space-time. Recently, Stein and Warburton found a polynomial equation for the location of the separatrix, for two different choices of inclination parameter. Following a method of Levin and Perez-Giz developed for the equatorial case, we use a correspondence between homoclinic orbits and unstable spherical orbits to derive explicit solutions to the separatrix polynomials. These solutions are parametrised in terms of the radius of the unstable spherical orbit.
克尔分离矩阵的参数解
克尔分离矩阵是参数空间中的边界,它将克尔黑洞时空中的束缚轨道与坠入轨道分开。最近,Stein和Warburton为两种不同的倾角参数选择找到了分离矩阵位置的多项式方程。根据Levin和Perez-Giz为赤道情况开发的方法,我们使用同斜轨道和不稳定球面轨道之间的对应关系来推导分离矩阵多项式的显式解。这些解是根据不稳定球面轨道的半径参数化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信