Jamie L. Y. Wu, Qin Ji, Colin Blackadar, Luan N. M. Nguyen, Zachary P. Lin, Zahra Sepahi, Benjamin P. Stordy, Adrian Granda Farias, Shrey Sindhwani, Wayne Ngo, Katherine Chan, Andrea Habsid, Jason Moffat, Warren C. W. Chan
{"title":"The pathways for nanoparticle transport across tumour endothelium","authors":"Jamie L. Y. Wu, Qin Ji, Colin Blackadar, Luan N. M. Nguyen, Zachary P. Lin, Zahra Sepahi, Benjamin P. Stordy, Adrian Granda Farias, Shrey Sindhwani, Wayne Ngo, Katherine Chan, Andrea Habsid, Jason Moffat, Warren C. W. Chan","doi":"10.1038/s41565-025-01877-5","DOIUrl":null,"url":null,"abstract":"<p>The active transport and retention principle is an alternative mechanism to the enhanced permeability and retention effect for explaining nanoparticle tumour delivery. It postulates that nanoparticles actively transport across tumour endothelial cells instead of passively moving through gaps between these cells. How nanoparticles transport across tumour endothelial cells remains unknown. Here we show that nanoparticles cross tumour endothelial cells predominantly using the non-receptor-based macropinocytosis pathway. We discovered that tumour endothelial cell membrane ruffles capture circulating nanoparticles, internalize them in intracellular vesicles and release them into the tumour interstitium. Tumour endothelial cells have a higher membrane ruffle density than healthy endothelium, which may partially explain the elevated nanoparticle tumour accumulation. Receptor-based endocytosis pathways such as clathrin-mediated endocytosis contribute to nanoparticle transport to a lesser extent. Nanoparticle size determines the degree of contribution for each pathway. Elucidating the nanoparticle transport mechanism is crucial for developing strategies to control nanoparticle tumour delivery.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"20 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01877-5","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The active transport and retention principle is an alternative mechanism to the enhanced permeability and retention effect for explaining nanoparticle tumour delivery. It postulates that nanoparticles actively transport across tumour endothelial cells instead of passively moving through gaps between these cells. How nanoparticles transport across tumour endothelial cells remains unknown. Here we show that nanoparticles cross tumour endothelial cells predominantly using the non-receptor-based macropinocytosis pathway. We discovered that tumour endothelial cell membrane ruffles capture circulating nanoparticles, internalize them in intracellular vesicles and release them into the tumour interstitium. Tumour endothelial cells have a higher membrane ruffle density than healthy endothelium, which may partially explain the elevated nanoparticle tumour accumulation. Receptor-based endocytosis pathways such as clathrin-mediated endocytosis contribute to nanoparticle transport to a lesser extent. Nanoparticle size determines the degree of contribution for each pathway. Elucidating the nanoparticle transport mechanism is crucial for developing strategies to control nanoparticle tumour delivery.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.