A Soluble Expression Construct of the Isolated Catalytic Domain of Plasmodium falciparum ATP4 Exhibits ATPase Activity Independent of a γ-Phosphate Receiving Aspartate

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Timo Beyer, Jesko Caliebe, Lara Kähler, Eric Beitz
{"title":"A Soluble Expression Construct of the Isolated Catalytic Domain of Plasmodium falciparum ATP4 Exhibits ATPase Activity Independent of a γ-Phosphate Receiving Aspartate","authors":"Timo Beyer, Jesko Caliebe, Lara Kähler, Eric Beitz","doi":"10.1111/mmi.15358","DOIUrl":null,"url":null,"abstract":"The sodium/proton-exchanging ATPase of <i>Plasmodium falciparum</i> malaria parasites, PfATP4, is an emerging drug target. Inhibition results in detrimental cell swelling due to cytosolic accumulation of sodium and alkalization. PfATP4 is a sodium-releasing type II P-type ATPase restricted to apicomplexan parasites. Experimental data on structure–function relationships of the isolated protein are absent. Here, we produced and purified the soluble catalytic domain of PfATP4 and evaluated kinetic properties by in vitro phosphate colorimetry. The protein exhibited Mg<sup>2+</sup>-dependent ATPase activity at the same order of magnitude as the native cellular PfATP4 and was insensitive to the presence of sodium. AlphaFold 3-based structure and ATP/Mg<sup>2+</sup> interaction predictions identified key residues of the nucleotide binding domain (Lys619, Lys652, Arg703). Replacement of the lysines by methionine decreased the enzymatic activity to one quarter. Individual mutation of the putative Mg<sup>2+</sup>-coordinating Asp865 of the phosphorylation domain was tolerated, while a joint replacement with Asp869 decreased ATPase again to one quarter. Mutation of the putative γ-phosphate receiving Asp451 maintained the rate of P<sub>i</sub> release. Our data attribute typical functional roles for P-type ATPases to the basic and acidic residues of the soluble PfATP4 catalytic domain and show that its ATP hydrolysis is independent of phosphorylation of Asp451.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"16 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15358","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The sodium/proton-exchanging ATPase of Plasmodium falciparum malaria parasites, PfATP4, is an emerging drug target. Inhibition results in detrimental cell swelling due to cytosolic accumulation of sodium and alkalization. PfATP4 is a sodium-releasing type II P-type ATPase restricted to apicomplexan parasites. Experimental data on structure–function relationships of the isolated protein are absent. Here, we produced and purified the soluble catalytic domain of PfATP4 and evaluated kinetic properties by in vitro phosphate colorimetry. The protein exhibited Mg2+-dependent ATPase activity at the same order of magnitude as the native cellular PfATP4 and was insensitive to the presence of sodium. AlphaFold 3-based structure and ATP/Mg2+ interaction predictions identified key residues of the nucleotide binding domain (Lys619, Lys652, Arg703). Replacement of the lysines by methionine decreased the enzymatic activity to one quarter. Individual mutation of the putative Mg2+-coordinating Asp865 of the phosphorylation domain was tolerated, while a joint replacement with Asp869 decreased ATPase again to one quarter. Mutation of the putative γ-phosphate receiving Asp451 maintained the rate of Pi release. Our data attribute typical functional roles for P-type ATPases to the basic and acidic residues of the soluble PfATP4 catalytic domain and show that its ATP hydrolysis is independent of phosphorylation of Asp451.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信