A metastasis-associated pannexin-1 mutant (Panx11-89) forms a minimalist ATP release channel.

Junjie Wang, Noah J Levi, Maykelis Diaz-Solares, Carsten Mim, Gerhard Dahl, Rene Barro-Soria
{"title":"A metastasis-associated pannexin-1 mutant (Panx1<sup>1-89</sup>) forms a minimalist ATP release channel.","authors":"Junjie Wang, Noah J Levi, Maykelis Diaz-Solares, Carsten Mim, Gerhard Dahl, Rene Barro-Soria","doi":"10.1111/febs.70060","DOIUrl":null,"url":null,"abstract":"<p><p>A truncated form of the ATP release channel pannexin 1 (Panx1), Panx1<sup>1-89</sup>, is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx1<sup>1-89</sup> on its own [without the presence of wild-type Panx1 (wtPanx1)] mediates ATP release has not been tested. Here, we show that Panx1<sup>1-89</sup> by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wtPanx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx1<sup>1-89</sup> polypeptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx1<sup>1-89</sup>-mediated conductance. Moreover, despite the severe truncation, Panx1<sup>1-89</sup> retains sensitivity to most wtPanx1 channel inhibitors. Therefore, Panx1 blockers may be of therapeutic value to combat metastatic cell survival. Our study both provides a mechanism for ATP release from cancer cells and suggests that Panx1<sup>1-89</sup> might aid in the structure-function analysis of Panx1 channels.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A truncated form of the ATP release channel pannexin 1 (Panx1), Panx11-89, is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx11-89 on its own [without the presence of wild-type Panx1 (wtPanx1)] mediates ATP release has not been tested. Here, we show that Panx11-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wtPanx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx11-89 polypeptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx11-89-mediated conductance. Moreover, despite the severe truncation, Panx11-89 retains sensitivity to most wtPanx1 channel inhibitors. Therefore, Panx1 blockers may be of therapeutic value to combat metastatic cell survival. Our study both provides a mechanism for ATP release from cancer cells and suggests that Panx11-89 might aid in the structure-function analysis of Panx1 channels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信