Slippery liquid infused porous surface (SLIPS) condensers for high efficiency air gap membrane distillation.

Yashwant S Yogi, Harsharaj B Parmar, Hamid Fattahi Juybari, Sina Nejati, Akshay K Rao, Rishav Roy, Mojtaba Zarei, Longnan Li, Soumyadip Sett, Abhimanyu Das, Nenad Miljkovic, Justin A Weibel, David M Warsinger
{"title":"Slippery liquid infused porous surface (SLIPS) condensers for high efficiency air gap membrane distillation.","authors":"Yashwant S Yogi, Harsharaj B Parmar, Hamid Fattahi Juybari, Sina Nejati, Akshay K Rao, Rishav Roy, Mojtaba Zarei, Longnan Li, Soumyadip Sett, Abhimanyu Das, Nenad Miljkovic, Justin A Weibel, David M Warsinger","doi":"10.1038/s44172-025-00348-y","DOIUrl":null,"url":null,"abstract":"<p><p>To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"48"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00348-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To address growing water scarcity, we must improve the energy efficiency of thermal desalination technologies such as air gap membrane distillation. However, promising functional materials such as slippery liquid infused porous surfaces have not yet implemented for any desalination technology. Here, we fabricate and test slippery liquid infused porous surfaces (using Krytox 16,256 lubricant and CuO nanostructures) in an air gap membrane distillation apparatus. System-level transport models, validated by experimental data, establish a framework for improving performance through enhanced condensation surfaces. Results are obtained across a range of temperatures (50-80 °C), salinities (5-105 g/kg), and module lengths. We find that small air gap thickness and efficient droplet shedding significantly improves performance. The CuO Krytox process achieves these with a conductive-self-limiting coating, high nanostructure rugosity, strong covalent and metallic bonding, high hydrophobicity, minimal droplet pinning sites, and ultra-low contact angle hysteresis. The greatest efficiency enhancement from SLIPS is derived from the improved droplet shedding, which allows for reduced gap sizes without flooding, and is further augmented by the increased permeate flux.

用于高效气隙膜蒸馏的多孔表面滑液(SLIPS)冷凝器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信