The underlying neurobiological basis of gray matter volume alterations in schizophrenia with auditory verbal hallucinations: A meta-analytic investigation

IF 5.3 2区 医学 Q1 CLINICAL NEUROLOGY
Yuanjun Xie , Tian Zhang , Chaozong Ma , Muzhen Guan , Chenxi Li , Lingling Wang , Xinxin Lin , Yijun Li , Zhongheng Wang , Huaning Wang , Peng Fang
{"title":"The underlying neurobiological basis of gray matter volume alterations in schizophrenia with auditory verbal hallucinations: A meta-analytic investigation","authors":"Yuanjun Xie ,&nbsp;Tian Zhang ,&nbsp;Chaozong Ma ,&nbsp;Muzhen Guan ,&nbsp;Chenxi Li ,&nbsp;Lingling Wang ,&nbsp;Xinxin Lin ,&nbsp;Yijun Li ,&nbsp;Zhongheng Wang ,&nbsp;Huaning Wang ,&nbsp;Peng Fang","doi":"10.1016/j.pnpbp.2025.111331","DOIUrl":null,"url":null,"abstract":"<div><div>Schizophrenia patients with auditory verbal hallucinations (AVH) frequently exhibit brain structural alterations, particularly reductions in gray matter volume (GMV).Understanding the neurobiological mechanisms underlying the changes is essential for advancing treatment strategies. To address this, a meta-analysis was conducted to identify GMV changes in schizophrenia patients with AVH and their associations with gene expression and neurotransmitter receptor profiles. The results indicated significant GMV reductions in the left and the right insula, as well as the left anterior cingulate cortex. Ontology analysis of genes associated with GMV alternations revealed enrichment in biological processes related to ion transport and synaptic transmission. Hub genes from the KCN, SCN, GN, and PRK families, along with neurotransmitter receptors such as D2, VAChT, and mGluR5, showed significant correlations with GMV changes. Furthermore, multivariate linear regression analysis demonstrated that GNB2, GNB4, PRKCG, D2, and mGluR5 significantly predicted GMV alternations. These findings suggest that GMV reductions in schizophrenia with AVH are linked to disruptions in neurobiological processes involving specific genes and neurotransmitter systems, highlighting the potential targets for therapeutic intervention.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"138 ","pages":"Article 111331"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000855","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Schizophrenia patients with auditory verbal hallucinations (AVH) frequently exhibit brain structural alterations, particularly reductions in gray matter volume (GMV).Understanding the neurobiological mechanisms underlying the changes is essential for advancing treatment strategies. To address this, a meta-analysis was conducted to identify GMV changes in schizophrenia patients with AVH and their associations with gene expression and neurotransmitter receptor profiles. The results indicated significant GMV reductions in the left and the right insula, as well as the left anterior cingulate cortex. Ontology analysis of genes associated with GMV alternations revealed enrichment in biological processes related to ion transport and synaptic transmission. Hub genes from the KCN, SCN, GN, and PRK families, along with neurotransmitter receptors such as D2, VAChT, and mGluR5, showed significant correlations with GMV changes. Furthermore, multivariate linear regression analysis demonstrated that GNB2, GNB4, PRKCG, D2, and mGluR5 significantly predicted GMV alternations. These findings suggest that GMV reductions in schizophrenia with AVH are linked to disruptions in neurobiological processes involving specific genes and neurotransmitter systems, highlighting the potential targets for therapeutic intervention.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
1.80%
发文量
153
审稿时长
56 days
期刊介绍: Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject. Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信