Low-carbohydrate diet enriched with omega-3 and omega-9 fatty acids modulates inflammation and lipid metabolism in the liver and white adipose tissue of a mouse model of obesity
{"title":"Low-carbohydrate diet enriched with omega-3 and omega-9 fatty acids modulates inflammation and lipid metabolism in the liver and white adipose tissue of a mouse model of obesity","authors":"Aline Boveto Santamarina , Renata Guimarães Moreira , Laís Vales Mennitti , Yasmin Alaby Martins Ferreira , Andrea Jucá , Carla Máximo Prado , Luciana Pellegrini Pisani","doi":"10.1016/j.numecd.2025.103932","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and aim</h3><div>The low-carbohydrate high-fat (LCHF) diet lipids are often overlooked for obesity management. We hypothesized that unsaturated lipids enhance fatty acid metabolism, and influence obesity-related metainflammation.</div></div><div><h3>Methods and results</h3><div>Male Swiss mice were fed an obesity-inducing diet for ten weeks. Subsequently, the obese mice were divided into four groups, each receiving a LCHF diet enriched with different types of lipids: saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA) ω-3, PUFA ω-6, and monounsaturated fatty acids (MUFA) ω-9 during six weeks as an obesity intervention. For comparison, a lean control (CTL) group and an obesity control (HFC) group were also included, spanning the entire 16-week experimental protocol. We evaluated body mass gain, fatty acid profiles via gas chromatography, elongase, and desaturase activities, NFκBp65 expression by western blotting, and cytokine by ELISA kits in serum, liver, and retroperitoneal adipose tissue (RET) samples. Our results highlight that ω-3 and ω-9 LCHF diets facilitate weight loss and enhance unsaturated fatty acid incorporation in liver, RET, and serum compared to the other groups. The ω-3 LCHF diet notably reduced the ω-6/ω-3 ratio and improved inflammatory status by reducing cytokines such as IL-4, IL-17, IL-33, CXCL1/KC, and inhibiting NFκBp65 activity compared to the HFC group. Desaturase (delta-9 desaturase-18, delta-6 desaturase) and elongase (ELOVL5 and ELOVL6) activities were modulated in liver, RET, and serum samples by ω-3 and ω-9 compared to the HFC group.</div></div><div><h3>Conclusions</h3><div>ω-3 and ω-9 fats were most effective in obesity treatment with the LCHF diet, highlighting the significance of lipid type in carbohydrate-restriction for obesity management.</div></div>","PeriodicalId":49722,"journal":{"name":"Nutrition Metabolism and Cardiovascular Diseases","volume":"35 8","pages":"Article 103932"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Metabolism and Cardiovascular Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939475325000869","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim
The low-carbohydrate high-fat (LCHF) diet lipids are often overlooked for obesity management. We hypothesized that unsaturated lipids enhance fatty acid metabolism, and influence obesity-related metainflammation.
Methods and results
Male Swiss mice were fed an obesity-inducing diet for ten weeks. Subsequently, the obese mice were divided into four groups, each receiving a LCHF diet enriched with different types of lipids: saturated fatty acids (SFA), polyunsaturated fatty acids (PUFA) ω-3, PUFA ω-6, and monounsaturated fatty acids (MUFA) ω-9 during six weeks as an obesity intervention. For comparison, a lean control (CTL) group and an obesity control (HFC) group were also included, spanning the entire 16-week experimental protocol. We evaluated body mass gain, fatty acid profiles via gas chromatography, elongase, and desaturase activities, NFκBp65 expression by western blotting, and cytokine by ELISA kits in serum, liver, and retroperitoneal adipose tissue (RET) samples. Our results highlight that ω-3 and ω-9 LCHF diets facilitate weight loss and enhance unsaturated fatty acid incorporation in liver, RET, and serum compared to the other groups. The ω-3 LCHF diet notably reduced the ω-6/ω-3 ratio and improved inflammatory status by reducing cytokines such as IL-4, IL-17, IL-33, CXCL1/KC, and inhibiting NFκBp65 activity compared to the HFC group. Desaturase (delta-9 desaturase-18, delta-6 desaturase) and elongase (ELOVL5 and ELOVL6) activities were modulated in liver, RET, and serum samples by ω-3 and ω-9 compared to the HFC group.
Conclusions
ω-3 and ω-9 fats were most effective in obesity treatment with the LCHF diet, highlighting the significance of lipid type in carbohydrate-restriction for obesity management.
期刊介绍:
Nutrition, Metabolism & Cardiovascular Diseases is a forum designed to focus on the powerful interplay between nutritional and metabolic alterations, and cardiovascular disorders. It aims to be a highly qualified tool to help refine strategies against the nutrition-related epidemics of metabolic and cardiovascular diseases. By presenting original clinical and experimental findings, it introduces readers and authors into a rapidly developing area of clinical and preventive medicine, including also vascular biology. Of particular concern are the origins, the mechanisms and the means to prevent and control diabetes, atherosclerosis, hypertension, and other nutrition-related diseases.