Ternary micro-electrolysis filter media for efficient PFOA removal in water: synthesis, characterization, and performance study.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-02-28 DOI:10.2166/wst.2025.033
Shuilian Li, Lishan Zhang, Shan Zhong, Jiayan Zhu, Zengxian Wei
{"title":"Ternary micro-electrolysis filter media for efficient PFOA removal in water: synthesis, characterization, and performance study.","authors":"Shuilian Li, Lishan Zhang, Shan Zhong, Jiayan Zhu, Zengxian Wei","doi":"10.2166/wst.2025.033","DOIUrl":null,"url":null,"abstract":"<p><p>This study reports the preparation of granular ternary micro-electrolysis materials and their effectiveness in removing the emerging contaminant PFOA. Al/nZVI/C@F granules were synthesized using a liquid-phase reduction method combined with high-temperature calcination. By comparing the removal of methylene blue dye by granules, the optimum preparation conditions were determined as follows: Fe:C = 5:1, fly ash = 50%, calcination temperature = 800 °C, and holding time = 1 h. Static batch experiments revealed that under optimal conditions (PFOA concentration = 25 mg/L, solid-liquid ratio = 30 g/L, pH = 3, reaction temperature = 15 °C), Al/nZVI/C@F achieved a PFOA removal rate of 97.83%. The removal efficiency of Al/nZVI/C@F (93.90%) was significantly higher than that of commercial iron-carbon (12.75%). After 45 days of dynamic column experiments, the removal efficiency of nZVI/C@F and Al/nZVI/C@F for PFOA (50 mg/L) remained above 60%, demonstrating strong practical application potential. Further adsorption-desorption experiments revealed that nZVI/C@F and Al/nZVI/C@F primarily removed 50 mg/L PFOA through adsorption. For a lower PFOA concentration of 0.5 mg/L, the defluorination rates were 53.2% for nZVI/C@F and 68.9% for Al/nZVI/C@F. High-performance liquid chromatography-tandem mass spectrometry was used to analyze the intermediates formed during PFOA removal, leading to a proposed degradation pathway.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"609-625"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.033","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the preparation of granular ternary micro-electrolysis materials and their effectiveness in removing the emerging contaminant PFOA. Al/nZVI/C@F granules were synthesized using a liquid-phase reduction method combined with high-temperature calcination. By comparing the removal of methylene blue dye by granules, the optimum preparation conditions were determined as follows: Fe:C = 5:1, fly ash = 50%, calcination temperature = 800 °C, and holding time = 1 h. Static batch experiments revealed that under optimal conditions (PFOA concentration = 25 mg/L, solid-liquid ratio = 30 g/L, pH = 3, reaction temperature = 15 °C), Al/nZVI/C@F achieved a PFOA removal rate of 97.83%. The removal efficiency of Al/nZVI/C@F (93.90%) was significantly higher than that of commercial iron-carbon (12.75%). After 45 days of dynamic column experiments, the removal efficiency of nZVI/C@F and Al/nZVI/C@F for PFOA (50 mg/L) remained above 60%, demonstrating strong practical application potential. Further adsorption-desorption experiments revealed that nZVI/C@F and Al/nZVI/C@F primarily removed 50 mg/L PFOA through adsorption. For a lower PFOA concentration of 0.5 mg/L, the defluorination rates were 53.2% for nZVI/C@F and 68.9% for Al/nZVI/C@F. High-performance liquid chromatography-tandem mass spectrometry was used to analyze the intermediates formed during PFOA removal, leading to a proposed degradation pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信