New insights into the production of volatile fatty acids through low-temperature anaerobic fermentation of sludge enhanced by peracetic acid.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2025-03-01 Epub Date: 2025-02-26 DOI:10.2166/wst.2025.026
Yan Kuang, Yan Chen, Yan Wei, Jianwei Zhao
{"title":"New insights into the production of volatile fatty acids through low-temperature anaerobic fermentation of sludge enhanced by peracetic acid.","authors":"Yan Kuang, Yan Chen, Yan Wei, Jianwei Zhao","doi":"10.2166/wst.2025.026","DOIUrl":null,"url":null,"abstract":"<p><p>The production of short-chain fatty acids (SCFAs) through anaerobic fermentation is a significant strategy for the resource utilization of excess sludge (ES). However, the limitations of low temperatures and slow ES hydrolysis rates have resulted in less than optimal volatile fatty acid (VFA) accumulation. This study reports a new method for improving ES low-temperature anaerobic fermentation for VFA production using peracetic acid (PAA) pretreatment and elucidates the underlying mechanisms. The results showed that at 10 °C, PAA significantly enhanced the release of organic matter during ES anaerobic fermentation, increasing the soluble chemical oxygen demand concentration in the fermentation liquid, thereby creating conditions for subsequent acidification processes and VFAs accumulation. When the PAA dosage was 9%, the production of VFAs reached approximately 239.5 mg COD/g volatile suspended solids (VSS), which was 1.47 times that of the control group. Mechanistic analysis revealed that PAA improved sludge hydrolysis and acidification under low-temperature conditions but inhibited VFAs consumption, increased the activity of enzymes related to the hydrolysis and acidification processes, and suppressed the activity of F420, thereby enhancing VFA accumulation. The findings provide an alternative solution for the low-temperature biological resource utilization of ES.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 5","pages":"554-566"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.026","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The production of short-chain fatty acids (SCFAs) through anaerobic fermentation is a significant strategy for the resource utilization of excess sludge (ES). However, the limitations of low temperatures and slow ES hydrolysis rates have resulted in less than optimal volatile fatty acid (VFA) accumulation. This study reports a new method for improving ES low-temperature anaerobic fermentation for VFA production using peracetic acid (PAA) pretreatment and elucidates the underlying mechanisms. The results showed that at 10 °C, PAA significantly enhanced the release of organic matter during ES anaerobic fermentation, increasing the soluble chemical oxygen demand concentration in the fermentation liquid, thereby creating conditions for subsequent acidification processes and VFAs accumulation. When the PAA dosage was 9%, the production of VFAs reached approximately 239.5 mg COD/g volatile suspended solids (VSS), which was 1.47 times that of the control group. Mechanistic analysis revealed that PAA improved sludge hydrolysis and acidification under low-temperature conditions but inhibited VFAs consumption, increased the activity of enzymes related to the hydrolysis and acidification processes, and suppressed the activity of F420, thereby enhancing VFA accumulation. The findings provide an alternative solution for the low-temperature biological resource utilization of ES.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信