Multiple insecticide resistance in Anopheles funestus from Mopeia, Central Mozambique.

IF 2.4 3区 医学 Q3 INFECTIOUS DISEASES
Caroline Kiuru, Luis Constantino, Gildo Cole, Jonathan Karisa, Caroline Wanjiku, Miguel Okoko, Baltazar Candrinho, Francisco Saute, N Regina Rabinovich, Carlos Chaccour, Marta Ferreira Maia
{"title":"Multiple insecticide resistance in Anopheles funestus from Mopeia, Central Mozambique.","authors":"Caroline Kiuru, Luis Constantino, Gildo Cole, Jonathan Karisa, Caroline Wanjiku, Miguel Okoko, Baltazar Candrinho, Francisco Saute, N Regina Rabinovich, Carlos Chaccour, Marta Ferreira Maia","doi":"10.1186/s12936-025-05321-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The main malaria vector control methods implemented in Mozambique are insecticide-treated nets (ITN's) and indoor residual spraying (IRS). These insecticide-based interventions are currently threatened by the rapidly spreading insecticide resistance in several major malaria vectors. Monitoring of insecticide resistance is necessary to inform the selection of insecticides by control programmes. This study describes the insecticide resistance profiles of the main malaria vector, Anopheles funestus sensu lato. in Mopeia district, a malaria holoendemic area of the Zambezia province of Mozambique.</p><p><strong>Methods: </strong>Anopheles adults and larvae were collected from 15 sentinel sites across the district between October 2021 and September 2022. Wild-caught, unfed female adults were collected using CDC-light traps and pooled over three days before exposure to the test insecticide. For mosquitoes collected as larvae, F0 adults aged 3-5 days post-emergence were used for insecticide susceptibility testing. Resistance to bendiocarb, DDT, deltamethrin and pirimiphos-methyl was evaluated using the standard WHO tube bioassay. The mechanism of resistance was probed using the PBO (piperonyl butoxide) synergistic bioassay. The presence and frequency of different genetic mutations associated with insecticide resistance was assessed using polymerase chain reaction, including A296S-Rdl, L119F-GSTe2 and 6.5 kb SV (structural variation) insertion.</p><p><strong>Results: </strong>A total of 1349 female Anopheles mosquitoes (controls included) were used for susceptibility tests with discriminating insecticide concentrations. Phenotypic resistance to bendiocarb, DDT, deltamethrin and pirimiphos-methyl was observed, with 37%, 79%, 14% and 67% mortality rate respectively. Pre-exposure to PBO partially restored susceptibility to deltamethrin to a mortality rate of 80%. The frequency of the insecticide resistance mutations was 0.49, 0.05 and 0.92, for A296S-Rdl, L119F-GSTe2 and 6.5 kb SV insertion, respectively.</p><p><strong>Conclusion: </strong>Malaria vectors in Mopeia exhibit resistance to all four major public health insecticide classes: pyrethroids, organophosphates, organochlorides and carbamates. This highlights the urgent need to adopt new insecticide classes for vector control interventions. The partial restoration of susceptibility by PBO suggests resistance is being driven by various mechanisms including the involvement of metabolic resistance through cytochrome P450 monooxygenase enzymes and glutathione S-transferases.</p>","PeriodicalId":18317,"journal":{"name":"Malaria Journal","volume":"24 1","pages":"81"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaria Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12936-025-05321-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The main malaria vector control methods implemented in Mozambique are insecticide-treated nets (ITN's) and indoor residual spraying (IRS). These insecticide-based interventions are currently threatened by the rapidly spreading insecticide resistance in several major malaria vectors. Monitoring of insecticide resistance is necessary to inform the selection of insecticides by control programmes. This study describes the insecticide resistance profiles of the main malaria vector, Anopheles funestus sensu lato. in Mopeia district, a malaria holoendemic area of the Zambezia province of Mozambique.

Methods: Anopheles adults and larvae were collected from 15 sentinel sites across the district between October 2021 and September 2022. Wild-caught, unfed female adults were collected using CDC-light traps and pooled over three days before exposure to the test insecticide. For mosquitoes collected as larvae, F0 adults aged 3-5 days post-emergence were used for insecticide susceptibility testing. Resistance to bendiocarb, DDT, deltamethrin and pirimiphos-methyl was evaluated using the standard WHO tube bioassay. The mechanism of resistance was probed using the PBO (piperonyl butoxide) synergistic bioassay. The presence and frequency of different genetic mutations associated with insecticide resistance was assessed using polymerase chain reaction, including A296S-Rdl, L119F-GSTe2 and 6.5 kb SV (structural variation) insertion.

Results: A total of 1349 female Anopheles mosquitoes (controls included) were used for susceptibility tests with discriminating insecticide concentrations. Phenotypic resistance to bendiocarb, DDT, deltamethrin and pirimiphos-methyl was observed, with 37%, 79%, 14% and 67% mortality rate respectively. Pre-exposure to PBO partially restored susceptibility to deltamethrin to a mortality rate of 80%. The frequency of the insecticide resistance mutations was 0.49, 0.05 and 0.92, for A296S-Rdl, L119F-GSTe2 and 6.5 kb SV insertion, respectively.

Conclusion: Malaria vectors in Mopeia exhibit resistance to all four major public health insecticide classes: pyrethroids, organophosphates, organochlorides and carbamates. This highlights the urgent need to adopt new insecticide classes for vector control interventions. The partial restoration of susceptibility by PBO suggests resistance is being driven by various mechanisms including the involvement of metabolic resistance through cytochrome P450 monooxygenase enzymes and glutathione S-transferases.

莫桑比克中部 Mopeia 地区疟原虫对多种杀虫剂的抗药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Malaria Journal
Malaria Journal 医学-寄生虫学
CiteScore
5.10
自引率
23.30%
发文量
334
审稿时长
2-4 weeks
期刊介绍: Malaria Journal is aimed at the scientific community interested in malaria in its broadest sense. It is the only journal that publishes exclusively articles on malaria and, as such, it aims to bring together knowledge from the different specialities involved in this very broad discipline, from the bench to the bedside and to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信