Electromyographic typing gesture classification dataset for neurotechnological human-machine interfaces.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jonathan Eby, Moshe Beutel, David Koivisto, Idan Achituve, Ethan Fetaya, José Zariffa
{"title":"Electromyographic typing gesture classification dataset for neurotechnological human-machine interfaces.","authors":"Jonathan Eby, Moshe Beutel, David Koivisto, Idan Achituve, Ethan Fetaya, José Zariffa","doi":"10.1038/s41597-025-04763-w","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotechnological interfaces have the potential to create new forms of human-machine interactions, by allowing devices to interact directly with neurological signals instead of via intermediates such as keystrokes. Surface electromyography (sEMG) has been used extensively in myoelectric control systems, which use bioelectric activity recorded from muscles during contractions to classify actions. This technology has been used primarily for rehabilitation applications. In order to support the development of myoelectric interfaces for a broader range of human-machine interactions, we present an sEMG dataset obtained during key presses in a typing task. This fine-grained classification dataset consists of 16-channel bilateral sEMG recordings and key logs, collected from 19 individuals in two sessions on different days. We report baseline results on intra-session, inter-session and inter-subject evaluations. Our baseline results show that within-session accuracy is relatively high, even with simple learning models. However, the results on between-session and between-participant are much lower, showing that generalizing between sessions and individuals is an open challenge.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"440"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04763-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neurotechnological interfaces have the potential to create new forms of human-machine interactions, by allowing devices to interact directly with neurological signals instead of via intermediates such as keystrokes. Surface electromyography (sEMG) has been used extensively in myoelectric control systems, which use bioelectric activity recorded from muscles during contractions to classify actions. This technology has been used primarily for rehabilitation applications. In order to support the development of myoelectric interfaces for a broader range of human-machine interactions, we present an sEMG dataset obtained during key presses in a typing task. This fine-grained classification dataset consists of 16-channel bilateral sEMG recordings and key logs, collected from 19 individuals in two sessions on different days. We report baseline results on intra-session, inter-session and inter-subject evaluations. Our baseline results show that within-session accuracy is relatively high, even with simple learning models. However, the results on between-session and between-participant are much lower, showing that generalizing between sessions and individuals is an open challenge.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信