Jonathan Eby, Moshe Beutel, David Koivisto, Idan Achituve, Ethan Fetaya, José Zariffa
{"title":"Electromyographic typing gesture classification dataset for neurotechnological human-machine interfaces.","authors":"Jonathan Eby, Moshe Beutel, David Koivisto, Idan Achituve, Ethan Fetaya, José Zariffa","doi":"10.1038/s41597-025-04763-w","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotechnological interfaces have the potential to create new forms of human-machine interactions, by allowing devices to interact directly with neurological signals instead of via intermediates such as keystrokes. Surface electromyography (sEMG) has been used extensively in myoelectric control systems, which use bioelectric activity recorded from muscles during contractions to classify actions. This technology has been used primarily for rehabilitation applications. In order to support the development of myoelectric interfaces for a broader range of human-machine interactions, we present an sEMG dataset obtained during key presses in a typing task. This fine-grained classification dataset consists of 16-channel bilateral sEMG recordings and key logs, collected from 19 individuals in two sessions on different days. We report baseline results on intra-session, inter-session and inter-subject evaluations. Our baseline results show that within-session accuracy is relatively high, even with simple learning models. However, the results on between-session and between-participant are much lower, showing that generalizing between sessions and individuals is an open challenge.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"440"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909141/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04763-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurotechnological interfaces have the potential to create new forms of human-machine interactions, by allowing devices to interact directly with neurological signals instead of via intermediates such as keystrokes. Surface electromyography (sEMG) has been used extensively in myoelectric control systems, which use bioelectric activity recorded from muscles during contractions to classify actions. This technology has been used primarily for rehabilitation applications. In order to support the development of myoelectric interfaces for a broader range of human-machine interactions, we present an sEMG dataset obtained during key presses in a typing task. This fine-grained classification dataset consists of 16-channel bilateral sEMG recordings and key logs, collected from 19 individuals in two sessions on different days. We report baseline results on intra-session, inter-session and inter-subject evaluations. Our baseline results show that within-session accuracy is relatively high, even with simple learning models. However, the results on between-session and between-participant are much lower, showing that generalizing between sessions and individuals is an open challenge.
期刊介绍:
Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data.
The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.