Calycosin alleviates ovariectomy-induced osteoporosis by promoting BMSCs autophagy via the PI3K/Akt/mTOR pathway.

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Shouyu Xiang, Yinji Luo, Wei Liu, Cheng Tang, Tianyu Zhu, Lai Tian, Tiansheng Zheng, Long Ling, Mingyang Jia, Xing Li, Yanming Cao
{"title":"Calycosin alleviates ovariectomy-induced osteoporosis by promoting BMSCs autophagy via the PI3K/Akt/mTOR pathway.","authors":"Shouyu Xiang, Yinji Luo, Wei Liu, Cheng Tang, Tianyu Zhu, Lai Tian, Tiansheng Zheng, Long Ling, Mingyang Jia, Xing Li, Yanming Cao","doi":"10.1007/s00210-025-04009-x","DOIUrl":null,"url":null,"abstract":"<p><p>Calycosin, the main extract from the traditional Chinese medicine (TCM) Astragalus membranaceus, has demonstrated anti-osteoporotic properties in ovariectomized (OVX) mice. However, the specific pathways through which it prevents osteoporosis remain unexplored. This study aimed to investigate the pathways by which calycosin promotes autophagy in bone marrow mesenchymal stem cells (BMSCs) and alleviates ovariectomy-induced osteoporosis. Mice were divided into three groups: sham, OVX, and OVX + calycosin. Following a 12-week intervention period, assessments included analysis of bone microstructure, serum concentrations of LC3II and ALP, and evaluation of Trap expression in femoral tissue. Immunohistochemical staining was used to assess the expression levels of PI3K, Runx2, and Beclin-1 in bone tissue. Additionally, levels of Runx2, ALP, p-PI3K, PI3K, mTOR, p-mTOR, Beclin-1, and ULK1 were analyzed. Osteogenic differentiation of BMSCs was evaluated using ALP and Alizarin red staining. OVX significantly impaired BMSCs osteogenic differentiation, resulting in bone loss. In contrast, calycosin increased bone mass, promoted osteogenesis, and reduced cancellous bone loss. Parameters, such as BMD, BV/TV, Tb.N, and Tb.Th, were significantly higher in the OVX + calycosin group compared to the OVX group. Additionally, Tb.Sp was notably reduced in the OVX + calycosin group. Calycosin also upregulated levels of Runx2, ALP, p-PI3K, p-mTOR, ULK1, and Beclin-1. In cellular studies, calycosin promoted BMSCs osteogenesis under OVX conditions; however, this effect was inhibited by LY294002. Calycosin effectively combats bone loss and improves bone structure. Its mechanism likely involves the promotion of autophagy in osteoblasts, thereby stimulating BMSC osteogenic differentiation. This effect may be mediated through the PI3K/Akt/mTOR pathway. These findings suggest that calycosin has the potential to serve as an alternative therapy for treating osteoporosis.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-04009-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Calycosin, the main extract from the traditional Chinese medicine (TCM) Astragalus membranaceus, has demonstrated anti-osteoporotic properties in ovariectomized (OVX) mice. However, the specific pathways through which it prevents osteoporosis remain unexplored. This study aimed to investigate the pathways by which calycosin promotes autophagy in bone marrow mesenchymal stem cells (BMSCs) and alleviates ovariectomy-induced osteoporosis. Mice were divided into three groups: sham, OVX, and OVX + calycosin. Following a 12-week intervention period, assessments included analysis of bone microstructure, serum concentrations of LC3II and ALP, and evaluation of Trap expression in femoral tissue. Immunohistochemical staining was used to assess the expression levels of PI3K, Runx2, and Beclin-1 in bone tissue. Additionally, levels of Runx2, ALP, p-PI3K, PI3K, mTOR, p-mTOR, Beclin-1, and ULK1 were analyzed. Osteogenic differentiation of BMSCs was evaluated using ALP and Alizarin red staining. OVX significantly impaired BMSCs osteogenic differentiation, resulting in bone loss. In contrast, calycosin increased bone mass, promoted osteogenesis, and reduced cancellous bone loss. Parameters, such as BMD, BV/TV, Tb.N, and Tb.Th, were significantly higher in the OVX + calycosin group compared to the OVX group. Additionally, Tb.Sp was notably reduced in the OVX + calycosin group. Calycosin also upregulated levels of Runx2, ALP, p-PI3K, p-mTOR, ULK1, and Beclin-1. In cellular studies, calycosin promoted BMSCs osteogenesis under OVX conditions; however, this effect was inhibited by LY294002. Calycosin effectively combats bone loss and improves bone structure. Its mechanism likely involves the promotion of autophagy in osteoblasts, thereby stimulating BMSC osteogenic differentiation. This effect may be mediated through the PI3K/Akt/mTOR pathway. These findings suggest that calycosin has the potential to serve as an alternative therapy for treating osteoporosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信