Poncirus trifoliata Extract and Its Active Coumarins Alleviate Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Protein Synthesis, Mitochondrial Biogenesis, and Gut Microbiota.
Hyejin Ko, Tam Thi Le, Ngoc Bao Nguyen, Suk Woo Kang, Kwang Hyun Cha, Nain Yang, Sang Hoon Jung, Myungsuk Kim
{"title":"Poncirus trifoliata Extract and Its Active Coumarins Alleviate Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Protein Synthesis, Mitochondrial Biogenesis, and Gut Microbiota.","authors":"Hyejin Ko, Tam Thi Le, Ngoc Bao Nguyen, Suk Woo Kang, Kwang Hyun Cha, Nain Yang, Sang Hoon Jung, Myungsuk Kim","doi":"10.1002/ptr.8478","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia, an age-related decline in skeletal muscle mass and function, contributes to frailty and increased morbidity in the elderly. This necessitates the development of effective interventions to combat muscle atrophy. This study investigated the therapeutic potential of Poncirus trifoliata ethanol extract (PT) and its coumarin derivatives against dexamethasone (DEX)-induced muscle atrophy. We employed in vitro and in vivo models of DEX-induced muscle atrophy. C2C12 myotubes were used for mechanistic studies. C57BL/6J mice received DEX injections and oral PT supplementation (50 mg/kg/day) to evaluate effects on muscle mass, function, gene expression, and gut microbiota composition. In vitro, PT enhanced protein synthesis, mitochondrial biogenesis, and myogenic differentiation in DEX-exposed myotubes, with auraptene, ponciol, and triphasiol identified as key bioactive coumarins. In vivo, PT significantly attenuated DEX-induced muscle atrophy, increasing tibialis anterior muscle mass by 36% (p < 0.01), grip strength by 31% (p < 0.001), and maximal running speed by 18% (p < 0.05). Mechanistically, PT upregulated genes associated with muscle function and mitochondrial health. Furthermore, PT modulated gut microbiota composition, notably increasing Phocaeicola vulgatus abundance 2.2-fold, which correlated with improved muscle performance (R = 0.58, p < 0.01). These findings suggest that PT and its coumarin derivatives, particularly auraptene, ponciol, and triphasiol, hold promise as therapeutic agents for combating muscle atrophy. The observed benefits may be mediated through enhanced protein synthesis, improved mitochondrial function, and modulation of the gut-muscle axis.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, contributes to frailty and increased morbidity in the elderly. This necessitates the development of effective interventions to combat muscle atrophy. This study investigated the therapeutic potential of Poncirus trifoliata ethanol extract (PT) and its coumarin derivatives against dexamethasone (DEX)-induced muscle atrophy. We employed in vitro and in vivo models of DEX-induced muscle atrophy. C2C12 myotubes were used for mechanistic studies. C57BL/6J mice received DEX injections and oral PT supplementation (50 mg/kg/day) to evaluate effects on muscle mass, function, gene expression, and gut microbiota composition. In vitro, PT enhanced protein synthesis, mitochondrial biogenesis, and myogenic differentiation in DEX-exposed myotubes, with auraptene, ponciol, and triphasiol identified as key bioactive coumarins. In vivo, PT significantly attenuated DEX-induced muscle atrophy, increasing tibialis anterior muscle mass by 36% (p < 0.01), grip strength by 31% (p < 0.001), and maximal running speed by 18% (p < 0.05). Mechanistically, PT upregulated genes associated with muscle function and mitochondrial health. Furthermore, PT modulated gut microbiota composition, notably increasing Phocaeicola vulgatus abundance 2.2-fold, which correlated with improved muscle performance (R = 0.58, p < 0.01). These findings suggest that PT and its coumarin derivatives, particularly auraptene, ponciol, and triphasiol, hold promise as therapeutic agents for combating muscle atrophy. The observed benefits may be mediated through enhanced protein synthesis, improved mitochondrial function, and modulation of the gut-muscle axis.
期刊介绍:
Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field.
Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters.
By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.