Poncirus trifoliata Extract and Its Active Coumarins Alleviate Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Protein Synthesis, Mitochondrial Biogenesis, and Gut Microbiota.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Hyejin Ko, Tam Thi Le, Ngoc Bao Nguyen, Suk Woo Kang, Kwang Hyun Cha, Nain Yang, Sang Hoon Jung, Myungsuk Kim
{"title":"Poncirus trifoliata Extract and Its Active Coumarins Alleviate Dexamethasone-Induced Skeletal Muscle Atrophy by Regulating Protein Synthesis, Mitochondrial Biogenesis, and Gut Microbiota.","authors":"Hyejin Ko, Tam Thi Le, Ngoc Bao Nguyen, Suk Woo Kang, Kwang Hyun Cha, Nain Yang, Sang Hoon Jung, Myungsuk Kim","doi":"10.1002/ptr.8478","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia, an age-related decline in skeletal muscle mass and function, contributes to frailty and increased morbidity in the elderly. This necessitates the development of effective interventions to combat muscle atrophy. This study investigated the therapeutic potential of Poncirus trifoliata ethanol extract (PT) and its coumarin derivatives against dexamethasone (DEX)-induced muscle atrophy. We employed in vitro and in vivo models of DEX-induced muscle atrophy. C2C12 myotubes were used for mechanistic studies. C57BL/6J mice received DEX injections and oral PT supplementation (50 mg/kg/day) to evaluate effects on muscle mass, function, gene expression, and gut microbiota composition. In vitro, PT enhanced protein synthesis, mitochondrial biogenesis, and myogenic differentiation in DEX-exposed myotubes, with auraptene, ponciol, and triphasiol identified as key bioactive coumarins. In vivo, PT significantly attenuated DEX-induced muscle atrophy, increasing tibialis anterior muscle mass by 36% (p < 0.01), grip strength by 31% (p < 0.001), and maximal running speed by 18% (p < 0.05). Mechanistically, PT upregulated genes associated with muscle function and mitochondrial health. Furthermore, PT modulated gut microbiota composition, notably increasing Phocaeicola vulgatus abundance 2.2-fold, which correlated with improved muscle performance (R = 0.58, p < 0.01). These findings suggest that PT and its coumarin derivatives, particularly auraptene, ponciol, and triphasiol, hold promise as therapeutic agents for combating muscle atrophy. The observed benefits may be mediated through enhanced protein synthesis, improved mitochondrial function, and modulation of the gut-muscle axis.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8478","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sarcopenia, an age-related decline in skeletal muscle mass and function, contributes to frailty and increased morbidity in the elderly. This necessitates the development of effective interventions to combat muscle atrophy. This study investigated the therapeutic potential of Poncirus trifoliata ethanol extract (PT) and its coumarin derivatives against dexamethasone (DEX)-induced muscle atrophy. We employed in vitro and in vivo models of DEX-induced muscle atrophy. C2C12 myotubes were used for mechanistic studies. C57BL/6J mice received DEX injections and oral PT supplementation (50 mg/kg/day) to evaluate effects on muscle mass, function, gene expression, and gut microbiota composition. In vitro, PT enhanced protein synthesis, mitochondrial biogenesis, and myogenic differentiation in DEX-exposed myotubes, with auraptene, ponciol, and triphasiol identified as key bioactive coumarins. In vivo, PT significantly attenuated DEX-induced muscle atrophy, increasing tibialis anterior muscle mass by 36% (p < 0.01), grip strength by 31% (p < 0.001), and maximal running speed by 18% (p < 0.05). Mechanistically, PT upregulated genes associated with muscle function and mitochondrial health. Furthermore, PT modulated gut microbiota composition, notably increasing Phocaeicola vulgatus abundance 2.2-fold, which correlated with improved muscle performance (R = 0.58, p < 0.01). These findings suggest that PT and its coumarin derivatives, particularly auraptene, ponciol, and triphasiol, hold promise as therapeutic agents for combating muscle atrophy. The observed benefits may be mediated through enhanced protein synthesis, improved mitochondrial function, and modulation of the gut-muscle axis.

三叶椿提取物及其活性香豆素通过调节蛋白质合成、线粒体生物生成和肠道微生物群缓解地塞米松诱导的骨骼肌萎缩
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信