Lactic acidosis: implications for human exercise performance.

IF 2.8 3区 医学 Q2 PHYSIOLOGY
European Journal of Applied Physiology Pub Date : 2025-07-01 Epub Date: 2025-03-15 DOI:10.1007/s00421-025-05750-0
Simeon P Cairns, Michael I Lindinger
{"title":"Lactic acidosis: implications for human exercise performance.","authors":"Simeon P Cairns, Michael I Lindinger","doi":"10.1007/s00421-025-05750-0","DOIUrl":null,"url":null,"abstract":"<p><p>During high-intensity exercise a lactic-acidosis occurs with raised myoplasmic and plasma concentrations of lactate<sup>-</sup> and protons ([lactate<sup>-</sup>], [H<sup>+</sup>] or pH). We critically evaluate whether this causes/contributes to fatigue during human exercise. Increases of [lactate<sup>-</sup>] per se (to 25 mM in plasma, 50 mM intracellularly) exert little detrimental effect on muscle performance while ingestion/infusion of lactate<sup>-</sup> can be ergogenic. An exercise-induced intracellular acidosis at the whole-muscle level (pH<sub>i</sub> falls from 7.1-7.0 to 6.9-6.3), incorporates small changes in slow-twitch fibres (pH<sub>i</sub> ~ 6.9) and large changes in fast-twitch fibres (pH<sub>i</sub> ~ 6.2). The relationship between peak force/power and acidosis during fatiguing contractions varies across exercise regimes implying that acidosis is not the sole cause of fatigue. Concomitant changes of other putative fatigue factors include phosphate metabolites, glycogen, ions and reactive oxygen species. Acidosis to pH<sub>i</sub> 6.7-6.6 at physiological temperatures (during recovery from exercise or induced in non-fatigued muscle), has minimal effect on force/power. Acidosis to pH<sub>i</sub> ~ 6.5-6.2 per se reduces maximum force (~12%), slows shortening velocity (~5%), and lowers peak power (~22%) in non-fatigued muscles/individuals. A pre-exercise induced-acidosis with ammonium chloride impairs exercise performance in humans and accelerates the decline of force/power (15-40% initial) in animal muscles stimulated repeatedly in situ. Raised [H<sup>+</sup>]<sub>i</sub> and diprotonated inorganic phosphate ([H<sub>2</sub>PO<sub>4</sub><sup>-</sup>]<sub>i</sub>) act on myofilament proteins to reduce maximum cross-bridge activity, Ca<sup>2+</sup>-sensitivity, and myosin ATPase activity. Acidosis/[lactate<sup>-</sup>]<sub>o</sub> attenuates detrimental effects of large K<sup>+</sup>-disturbances on action potentials and force in non-fatigued muscle. We propose that depressive effects of acidosis and [H<sub>2</sub>PO<sub>4</sub><sup>-</sup>]<sub>i</sub> on myofilament function dominate over the protective effects of acidosis/lactate<sup>-</sup> on action potentials during fatigue. Raised extracellular [H<sup>+</sup>]/[lactate<sup>-</sup>] do not usually cause central fatigue but do contribute to elevated perceived exertion and fatigue sensations by activating group III/IV muscle afferents. Modulation of H<sup>+</sup>/lactate<sup>-</sup> regulation (via extracellular H<sup>+</sup>-buffers, monocarboxylate transporters, carbonic anhydrase, carnosine) supports a role for intracellular acidosis in fatigue. In conclusion, current evidence advocates that severe acidosis in fast-twitch fibres can contribute to force/power fatigue during intense human exercise.</p>","PeriodicalId":12005,"journal":{"name":"European Journal of Applied Physiology","volume":" ","pages":"1761-1795"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227488/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00421-025-05750-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During high-intensity exercise a lactic-acidosis occurs with raised myoplasmic and plasma concentrations of lactate- and protons ([lactate-], [H+] or pH). We critically evaluate whether this causes/contributes to fatigue during human exercise. Increases of [lactate-] per se (to 25 mM in plasma, 50 mM intracellularly) exert little detrimental effect on muscle performance while ingestion/infusion of lactate- can be ergogenic. An exercise-induced intracellular acidosis at the whole-muscle level (pHi falls from 7.1-7.0 to 6.9-6.3), incorporates small changes in slow-twitch fibres (pHi ~ 6.9) and large changes in fast-twitch fibres (pHi ~ 6.2). The relationship between peak force/power and acidosis during fatiguing contractions varies across exercise regimes implying that acidosis is not the sole cause of fatigue. Concomitant changes of other putative fatigue factors include phosphate metabolites, glycogen, ions and reactive oxygen species. Acidosis to pHi 6.7-6.6 at physiological temperatures (during recovery from exercise or induced in non-fatigued muscle), has minimal effect on force/power. Acidosis to pHi ~ 6.5-6.2 per se reduces maximum force (~12%), slows shortening velocity (~5%), and lowers peak power (~22%) in non-fatigued muscles/individuals. A pre-exercise induced-acidosis with ammonium chloride impairs exercise performance in humans and accelerates the decline of force/power (15-40% initial) in animal muscles stimulated repeatedly in situ. Raised [H+]i and diprotonated inorganic phosphate ([H2PO4-]i) act on myofilament proteins to reduce maximum cross-bridge activity, Ca2+-sensitivity, and myosin ATPase activity. Acidosis/[lactate-]o attenuates detrimental effects of large K+-disturbances on action potentials and force in non-fatigued muscle. We propose that depressive effects of acidosis and [H2PO4-]i on myofilament function dominate over the protective effects of acidosis/lactate- on action potentials during fatigue. Raised extracellular [H+]/[lactate-] do not usually cause central fatigue but do contribute to elevated perceived exertion and fatigue sensations by activating group III/IV muscle afferents. Modulation of H+/lactate- regulation (via extracellular H+-buffers, monocarboxylate transporters, carbonic anhydrase, carnosine) supports a role for intracellular acidosis in fatigue. In conclusion, current evidence advocates that severe acidosis in fast-twitch fibres can contribute to force/power fatigue during intense human exercise.

乳酸性酸中毒:对人体运动表现的影响。
在高强度运动中,乳酸酸中毒伴随着肌浆和血浆乳酸离子和质子([乳酸-]、[H+]或pH)浓度升高而发生。我们批判性地评估这是否会导致/促成人体运动时的疲劳。[乳酸-]本身的增加(血浆中为25毫米,细胞内为50毫米)对肌肉表现几乎没有有害影响,而摄入/输注乳酸-可能是人体必需的。运动引起的全肌水平细胞内酸中毒(pHi从7.1-7.0下降到6.9-6.3),包括慢肌纤维的小变化(pHi ~ 6.9)和快肌纤维的大变化(pHi ~ 6.2)。在疲劳收缩期间,峰值力/功率和酸中毒之间的关系因运动方式而异,这意味着酸中毒不是疲劳的唯一原因。伴随变化的其他假定的疲劳因素包括磷酸盐代谢物、糖原、离子和活性氧。生理温度下ph6.7 -6.6的酸中毒(在运动恢复期间或在非疲劳肌肉中引起)对力/力的影响最小。在非疲劳肌肉/个体中,pHi ~ 6.5-6.2酸中毒本身会降低最大力(~12%),减慢缩短速度(~5%),降低峰值功率(~22%)。运动前氯化铵引起的酸中毒损害了人类的运动表现,并加速了原位反复刺激动物肌肉力量/动力的下降(最初为15-40%)。升高的[H+]i和双质子化无机磷酸盐([H2PO4-]i)作用于肌丝蛋白,最大限度地降低过桥活性、Ca2+敏感性和肌球蛋白atp酶活性。酸中毒/[乳酸-]o减轻了大量钾离子干扰对非疲劳肌肉的动作电位和力的有害影响。我们认为酸中毒和[H2PO4-]i对肌丝功能的抑制作用比酸中毒/乳酸-对疲劳时动作电位的保护作用更重要。细胞外[H+]/[乳酸-]升高通常不会引起中枢性疲劳,但通过激活III/IV组肌肉传入神经,确实会导致劳累感和疲劳感升高。H+/乳酸调节的调节(通过细胞外H+缓冲液、单羧酸转运体、碳酸酐酶、肌肽)支持疲劳中细胞内酸中毒的作用。总之,目前的证据表明,在人体剧烈运动中,快肌纤维的严重酸中毒会导致力量/力量疲劳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
6.70%
发文量
227
审稿时长
3 months
期刊介绍: The European Journal of Applied Physiology (EJAP) aims to promote mechanistic advances in human integrative and translational physiology. Physiology is viewed broadly, having overlapping context with related disciplines such as biomechanics, biochemistry, endocrinology, ergonomics, immunology, motor control, and nutrition. EJAP welcomes studies dealing with physical exercise, training and performance. Studies addressing physiological mechanisms are preferred over descriptive studies. Papers dealing with animal models or pathophysiological conditions are not excluded from consideration, but must be clearly relevant to human physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信