VIEshunt: towards a ventricular intelligent and electromechanical shunt for hydrocephalus therapy.

IF 5.9 1区 医学 Q1 NEUROSCIENCES
Fabian Flürenbrock, Leonie Korn, Dominik Schulte, Anthony Podgoršak, Joris Chomarat, Janina Hug, Tiago Hungerland, Caroline Holzer, David Iselin, Luca Krebs, Rosina Weiss, Markus F Oertel, Lennart Stieglitz, Miriam Weisskopf, Mirko Meboldt, Melanie N Zeilinger, Marianne Schmid Daners
{"title":"VIEshunt: towards a ventricular intelligent and electromechanical shunt for hydrocephalus therapy.","authors":"Fabian Flürenbrock, Leonie Korn, Dominik Schulte, Anthony Podgoršak, Joris Chomarat, Janina Hug, Tiago Hungerland, Caroline Holzer, David Iselin, Luca Krebs, Rosina Weiss, Markus F Oertel, Lennart Stieglitz, Miriam Weisskopf, Mirko Meboldt, Melanie N Zeilinger, Marianne Schmid Daners","doi":"10.1186/s12987-025-00629-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Shunt systems for hydrocephalus therapy are commonly based on passive mechanical pressure valves that are driven by the intracranial, intra-abdominal, and hydrostatic pressure. The differential pressure acting on the valve determines the drainage rate of cerebrospinal fluid (CSF) but is not a gauge of the physiological condition of the patient. Internal and external influences can cause over- or underdrainage and lead to pathological levels of intracranial pressure (ICP).</p><p><strong>Methods: </strong>The first prototype of a ventricular intelligent and electromechanical shunt (VIEshunt) is developed, tested, and compared with previous efforts towards the development of a smart shunt. Its key components are a micro pump, a flow meter, a pressure sensor, an inertial measurement unit, a wireless communication interface, and a microcontroller. The VIEshunt prototype was tested in vitro using a hardware-in-the-loop (HiL) test bench that runs real-time patient simulations involving changes in intracranial and intra-abdominal pressure, as well as changes in posture ranging between supine and upright position. The prototype was subsequently tested in an in vivo pilot study based on an acute ovine animal model (n=1) with infusions of artificial CSF.</p><p><strong>Results: </strong>During 24 h in vitro testing, the prototype detected the simulated posture changes of the patient and automatically adapted the controller reference. The posture-specific ICP references of 12 mmHg for supine and -3 mmHg for upright position were tracked without offset, thus preventing adverse over- and underdrainage during the investigated HiL test scenario. During acute in vivo testing, the prototype first regulated the mean ICP of a sheep from 22 mmHg down to 20 mmHg. Each of the three subsequent intraventricular bolus infusions of 1 mL saline solution increased mean ICP by approximately 11 mmHg. While natural absorption alone decreased ICP by only 5 mmHg within 9 min, the prototype was able to regulate ICP back to the pre-bolus pressure value within 5 min.</p><p><strong>Conclusion: </strong>The developed VIEshunt prototype is capable of posture-dependent ICP regulation and CSF drainage control. Smart shunt systems based on VIEshunt could improve patient monitoring and enable optimal physiologic therapy by adapting to the individual patient. To derive statistically relevant conclusions for the performance of VIEshunt, future work will focus on the development of a next generation prototype for use in pre-clinical studies.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"22 1","pages":"28"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-025-00629-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Shunt systems for hydrocephalus therapy are commonly based on passive mechanical pressure valves that are driven by the intracranial, intra-abdominal, and hydrostatic pressure. The differential pressure acting on the valve determines the drainage rate of cerebrospinal fluid (CSF) but is not a gauge of the physiological condition of the patient. Internal and external influences can cause over- or underdrainage and lead to pathological levels of intracranial pressure (ICP).

Methods: The first prototype of a ventricular intelligent and electromechanical shunt (VIEshunt) is developed, tested, and compared with previous efforts towards the development of a smart shunt. Its key components are a micro pump, a flow meter, a pressure sensor, an inertial measurement unit, a wireless communication interface, and a microcontroller. The VIEshunt prototype was tested in vitro using a hardware-in-the-loop (HiL) test bench that runs real-time patient simulations involving changes in intracranial and intra-abdominal pressure, as well as changes in posture ranging between supine and upright position. The prototype was subsequently tested in an in vivo pilot study based on an acute ovine animal model (n=1) with infusions of artificial CSF.

Results: During 24 h in vitro testing, the prototype detected the simulated posture changes of the patient and automatically adapted the controller reference. The posture-specific ICP references of 12 mmHg for supine and -3 mmHg for upright position were tracked without offset, thus preventing adverse over- and underdrainage during the investigated HiL test scenario. During acute in vivo testing, the prototype first regulated the mean ICP of a sheep from 22 mmHg down to 20 mmHg. Each of the three subsequent intraventricular bolus infusions of 1 mL saline solution increased mean ICP by approximately 11 mmHg. While natural absorption alone decreased ICP by only 5 mmHg within 9 min, the prototype was able to regulate ICP back to the pre-bolus pressure value within 5 min.

Conclusion: The developed VIEshunt prototype is capable of posture-dependent ICP regulation and CSF drainage control. Smart shunt systems based on VIEshunt could improve patient monitoring and enable optimal physiologic therapy by adapting to the individual patient. To derive statistically relevant conclusions for the performance of VIEshunt, future work will focus on the development of a next generation prototype for use in pre-clinical studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信