{"title":"Antithrombin: Deficiency, Diversity, and the Future of Diagnostics.","authors":"Mirjam Kruijt, Christa M Cobbaert, L Renee Ruhaak","doi":"10.1002/mas.21929","DOIUrl":null,"url":null,"abstract":"<p><p>Our healthcare system provides reactive sick-care, treating patients after symptoms have appeared by prescription of generic and often suboptimal therapy. This strategy brings along high costs and high pressure which is not sustainable. Alternatively, P5 healthcare is proposed focusing on five key elements: prevention, personalization, prediction, participation, psychocognition, however, changes in current clinical care pathways are required, for which antithrombin deficiency is a prime example. Hereditary antithrombin deficiency (ATD) is a genetic disorder, for which screening is instigated after a thrombotic episode. Current diagnostic tests for ATD lack sensitivity and refinement to correctly classify patients, and generic treatments are prescribed. A molecular understanding of ATD through a molecular diagnostic test that analyzes all clinically relevant features of antithrombin is required. Here, clinically relevant molecular characteristics of antithrombin, the diversity of antithrombin (deficiency) in heath and disease, and the strengths and weaknesses of antithrombin tests are reviewed. A mass spectrometry test that molecularly characterizes a patients antithrombin proteoforms harbors the highest potential to improve the clinical pathway for ATD. Application of this MS-based test in a future enhanced clinical pathway will improve patient management and outcome through molecular characterization of antithrombin and enables the promise of P5 healthcare for ATD.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/mas.21929","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Our healthcare system provides reactive sick-care, treating patients after symptoms have appeared by prescription of generic and often suboptimal therapy. This strategy brings along high costs and high pressure which is not sustainable. Alternatively, P5 healthcare is proposed focusing on five key elements: prevention, personalization, prediction, participation, psychocognition, however, changes in current clinical care pathways are required, for which antithrombin deficiency is a prime example. Hereditary antithrombin deficiency (ATD) is a genetic disorder, for which screening is instigated after a thrombotic episode. Current diagnostic tests for ATD lack sensitivity and refinement to correctly classify patients, and generic treatments are prescribed. A molecular understanding of ATD through a molecular diagnostic test that analyzes all clinically relevant features of antithrombin is required. Here, clinically relevant molecular characteristics of antithrombin, the diversity of antithrombin (deficiency) in heath and disease, and the strengths and weaknesses of antithrombin tests are reviewed. A mass spectrometry test that molecularly characterizes a patients antithrombin proteoforms harbors the highest potential to improve the clinical pathway for ATD. Application of this MS-based test in a future enhanced clinical pathway will improve patient management and outcome through molecular characterization of antithrombin and enables the promise of P5 healthcare for ATD.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.