Head-group Modified Polydiacetylenes as Dual-output Optical Sensors for Environmentally Toxic-and Bio-analytes: An Update.

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ankit Thakuri, Mainak Banerjee, Amrita Chatterjee
{"title":"Head-group Modified Polydiacetylenes as Dual-output Optical Sensors for Environmentally Toxic-and Bio-analytes: An Update.","authors":"Ankit Thakuri, Mainak Banerjee, Amrita Chatterjee","doi":"10.1002/asia.202500219","DOIUrl":null,"url":null,"abstract":"<p><p>Polydiacetylenes (PDAs) have emerged as a promising class of stimuli-responsive materials due to their unique blue-to-red chromatic transition and associated fluorescence turn-on effect. These optical properties arise from the topochemical polymerization of diacetylene monomers into highly conjugated π-electron systems, enabling PDAs to function as dual-mode sensors. Their colorimetric and fluorimetric responses to external stimuli, including temperature, pH, mechanical stress, and chemical or biological interactions, have been widely exploited for sensing applications. PDA-based sensors have been developed for detecting volatile organic compounds (VOCs), metal ions, and pH changes, as well as for biological sensing of proteins, enzymes, and DNA. Additionally, PDAs have been utilized for environmental monitoring, including pollutant detection and mechanical strain assessment. A key strategy for enhancing PDA sensor performance involves adequate chemical modifications of the carboxyl-functionalized headgroup, which triggers a spectral change upon selective interactions with analytes. This review attempts to cover the strategies based on PDA headgroup modifications for tuning chromatic response, optical stability, and sensor efficiency, highlighting recent advancements and challenges. By exploring these modifications, this discussion aims to provide insights into the design of next-generation PDA-based sensors with improved performance and broader applicability.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202500219"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202500219","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polydiacetylenes (PDAs) have emerged as a promising class of stimuli-responsive materials due to their unique blue-to-red chromatic transition and associated fluorescence turn-on effect. These optical properties arise from the topochemical polymerization of diacetylene monomers into highly conjugated π-electron systems, enabling PDAs to function as dual-mode sensors. Their colorimetric and fluorimetric responses to external stimuli, including temperature, pH, mechanical stress, and chemical or biological interactions, have been widely exploited for sensing applications. PDA-based sensors have been developed for detecting volatile organic compounds (VOCs), metal ions, and pH changes, as well as for biological sensing of proteins, enzymes, and DNA. Additionally, PDAs have been utilized for environmental monitoring, including pollutant detection and mechanical strain assessment. A key strategy for enhancing PDA sensor performance involves adequate chemical modifications of the carboxyl-functionalized headgroup, which triggers a spectral change upon selective interactions with analytes. This review attempts to cover the strategies based on PDA headgroup modifications for tuning chromatic response, optical stability, and sensor efficiency, highlighting recent advancements and challenges. By exploring these modifications, this discussion aims to provide insights into the design of next-generation PDA-based sensors with improved performance and broader applicability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信