Smart Bioinspired Material-Based Actuators: Current Challenges and Prospects

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Alejandro Palacios, Léon Chiriatti, Simon Poppinga, Thomas Speck, Vincent Le Houérou
{"title":"Smart Bioinspired Material-Based Actuators: Current Challenges and Prospects","authors":"Alejandro Palacios,&nbsp;Léon Chiriatti,&nbsp;Simon Poppinga,&nbsp;Thomas Speck,&nbsp;Vincent Le Houérou","doi":"10.1002/aisy.202400396","DOIUrl":null,"url":null,"abstract":"<p>This research review discusses several examples of plant movements, either depending on the direction of the triggering stimuli (tropisms) or not (nastic responses), which have served as inspiration to develop smart biomimetic actuators. In addition, it presents an overview of the multiple approaches for the development of autonomous actuators based on synthetic materials, as well as of their advantages and disadvantages, applicability, and limitations. The classification is based on structural and conformational characteristics (mono-, bi-, or multimaterial assemblies, their orientation, chemical structures, and geometrical configurations). Additionally, this review presents an alternative formulation and extension of the pioneering Timoshenko's model, which provides an understanding of the underlying mechanical principle of bilayer bending actuation. Finally, upscaled applications of this actuation principle are described, focusing mainly on biomimetic architecture. Attention is given to previously reported real-life applications based on bio-based materials and material systems. Furthermore, this review discusses the multiple challenges for synthetic materials when an upscaling perspective is intended. In this sense, key aspects such as time responsiveness and mechanical amplification, in terms of speed, displacement, and load-bearing capability, are discussed.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400396","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This research review discusses several examples of plant movements, either depending on the direction of the triggering stimuli (tropisms) or not (nastic responses), which have served as inspiration to develop smart biomimetic actuators. In addition, it presents an overview of the multiple approaches for the development of autonomous actuators based on synthetic materials, as well as of their advantages and disadvantages, applicability, and limitations. The classification is based on structural and conformational characteristics (mono-, bi-, or multimaterial assemblies, their orientation, chemical structures, and geometrical configurations). Additionally, this review presents an alternative formulation and extension of the pioneering Timoshenko's model, which provides an understanding of the underlying mechanical principle of bilayer bending actuation. Finally, upscaled applications of this actuation principle are described, focusing mainly on biomimetic architecture. Attention is given to previously reported real-life applications based on bio-based materials and material systems. Furthermore, this review discusses the multiple challenges for synthetic materials when an upscaling perspective is intended. In this sense, key aspects such as time responsiveness and mechanical amplification, in terms of speed, displacement, and load-bearing capability, are discussed.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信