A High-Precision Dynamic Movement Recognition Algorithm Using Multimodal Biological Signals for Human–Machine Interaction

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Chenhao Cao, Gang Ma, Zelin Chen, Yiming Ouyang, Hu Jin, Shiwu Zhang
{"title":"A High-Precision Dynamic Movement Recognition Algorithm Using Multimodal Biological Signals for Human–Machine Interaction","authors":"Chenhao Cao,&nbsp;Gang Ma,&nbsp;Zelin Chen,&nbsp;Yiming Ouyang,&nbsp;Hu Jin,&nbsp;Shiwu Zhang","doi":"10.1002/aisy.202400483","DOIUrl":null,"url":null,"abstract":"<p>Accurate recognition of human dynamic movement is essential for seamless human–machine interaction (HMI) across various domains. However, most of the existing methods are single-modal movement recognition, which has inherent limitations, such as limited feature representation and instability to noise, which will affect its practical performance. To address these limitations, this article proposes a novel fusion approach that can integrate two biological signals, including electromyography (EMG) and bioelectrical impedance (BI). The fusion method combines EMG for capturing dynamic movement features and BI for discerning key postures representing discrete points within dynamic movements. In this method, the identification of key postures and their temporal sequences provide a guiding framework for the selection and weighted correction of probability prediction matrices in EMG-based dynamic recognition. To verify the effectiveness of the method, six dynamic upper limb movements and nine key postures are defined, and a Universal Robot that can follow movements is employed for experimental validation. Experimental results demonstrate that the recognition accuracy of the dynamic movement reaches 96.2%, representing an improvement of nearly 10% compared with single-modal signal. This study illustrates the potential of multimodal fusion of EMG and BI in movement recognition, with broad prospects for application in HMI fields.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400483","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate recognition of human dynamic movement is essential for seamless human–machine interaction (HMI) across various domains. However, most of the existing methods are single-modal movement recognition, which has inherent limitations, such as limited feature representation and instability to noise, which will affect its practical performance. To address these limitations, this article proposes a novel fusion approach that can integrate two biological signals, including electromyography (EMG) and bioelectrical impedance (BI). The fusion method combines EMG for capturing dynamic movement features and BI for discerning key postures representing discrete points within dynamic movements. In this method, the identification of key postures and their temporal sequences provide a guiding framework for the selection and weighted correction of probability prediction matrices in EMG-based dynamic recognition. To verify the effectiveness of the method, six dynamic upper limb movements and nine key postures are defined, and a Universal Robot that can follow movements is employed for experimental validation. Experimental results demonstrate that the recognition accuracy of the dynamic movement reaches 96.2%, representing an improvement of nearly 10% compared with single-modal signal. This study illustrates the potential of multimodal fusion of EMG and BI in movement recognition, with broad prospects for application in HMI fields.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信